Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Bilde den Grenzwert für den Zähler und den Grenzwert für den Nenner.
Schritt 1.2
Da der Logarithmus gegen unendlich geht, geht der Wert gegen .
Schritt 1.3
Da der Logarithmus gegen unendlich geht, geht der Wert gegen .
Schritt 1.4
Unendlich durch Unendlich geteilt ist nicht definiert.
Undefiniert
Schritt 2
Da unbestimmt ist, wende die Regel von L'Hospital an. Die Regel von L'Hospital besagt, dass der Grenzwert eines Quotienten von Funktionen gleich dem Grenzwert des Quotienten ihrer Ableitungen ist.
Schritt 3
Schritt 3.1
Differenziere den Zähler und Nenner.
Schritt 3.2
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 3.2.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 3.2.2
Die Ableitung von nach ist .
Schritt 3.2.3
Ersetze alle durch .
Schritt 3.3
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 3.4
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.5
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 3.6
Addiere und .
Schritt 3.7
Mutltipliziere mit .
Schritt 3.8
Die Ableitung von nach ist .
Schritt 4
Multipliziere den Zähler mit dem Kehrwert des Nenners.
Schritt 5
Schritt 5.1
Kombiniere und .
Schritt 5.2
Kombiniere und .
Schritt 6
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 7
Teile den Zähler und Nenner durch die höchste Potenz von im Nenner, was ist.
Schritt 8
Schritt 8.1
Kürze den gemeinsamen Faktor von .
Schritt 8.1.1
Kürze den gemeinsamen Faktor.
Schritt 8.1.2
Forme den Ausdruck um.
Schritt 8.2
Kürze den gemeinsamen Faktor von .
Schritt 8.2.1
Kürze den gemeinsamen Faktor.
Schritt 8.2.2
Forme den Ausdruck um.
Schritt 8.3
Zerlege den Grenzwert unter Anwendung der Quotientenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 8.4
Berechne den Grenzwert von , welcher konstant ist, wenn sich annähert.
Schritt 8.5
Zerlege den Grenzwert unter Anwendung der Summenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 8.6
Berechne den Grenzwert von , welcher konstant ist, wenn sich annähert.
Schritt 9
Da sein Zähler sich einer reellen Zahl nähert, während sein Nenner unbegrenzt ist, nähert sich der Bruch .
Schritt 10
Schritt 10.1
Addiere und .
Schritt 10.2
Kürze den gemeinsamen Faktor von .
Schritt 10.2.1
Kürze den gemeinsamen Faktor.
Schritt 10.2.2
Forme den Ausdruck um.
Schritt 10.3
Mutltipliziere mit .