Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schreibe als Funktion.
Schritt 2
Schritt 2.1
Bestimme die erste Ableitung.
Schritt 2.1.1
Differenziere unter Anwendung der Produktregel, die besagt, dass gleich ist mit und .
Schritt 2.1.2
Differenziere.
Schritt 2.1.2.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.1.2.2
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 2.1.2.3
Addiere und .
Schritt 2.1.2.4
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.1.2.5
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.1.2.6
Mutltipliziere mit .
Schritt 2.1.2.7
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.1.2.8
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.1.2.9
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 2.1.2.10
Vereinfache den Ausdruck.
Schritt 2.1.2.10.1
Addiere und .
Schritt 2.1.2.10.2
Bringe auf die linke Seite von .
Schritt 2.1.3
Vereinfache.
Schritt 2.1.3.1
Wende das Distributivgesetz an.
Schritt 2.1.3.2
Wende das Distributivgesetz an.
Schritt 2.1.3.3
Wende das Distributivgesetz an.
Schritt 2.1.3.4
Vereine die Terme
Schritt 2.1.3.4.1
Multipliziere mit durch Addieren der Exponenten.
Schritt 2.1.3.4.1.1
Bewege .
Schritt 2.1.3.4.1.2
Mutltipliziere mit .
Schritt 2.1.3.4.1.2.1
Potenziere mit .
Schritt 2.1.3.4.1.2.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 2.1.3.4.1.3
Addiere und .
Schritt 2.1.3.4.2
Bringe auf die linke Seite von .
Schritt 2.1.3.4.3
Mutltipliziere mit .
Schritt 2.1.3.4.4
Mutltipliziere mit .
Schritt 2.1.3.4.5
Mutltipliziere mit .
Schritt 2.1.3.4.6
Potenziere mit .
Schritt 2.1.3.4.7
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 2.1.3.4.8
Addiere und .
Schritt 2.1.3.4.9
Addiere und .
Schritt 2.1.3.4.10
Subtrahiere von .
Schritt 2.2
Die erste Ableitung von nach ist .
Schritt 3
Schritt 3.1
Setze die erste Ableitung gleich .
Schritt 3.2
Faktorisiere aus heraus.
Schritt 3.2.1
Faktorisiere aus heraus.
Schritt 3.2.2
Faktorisiere aus heraus.
Schritt 3.2.3
Faktorisiere aus heraus.
Schritt 3.3
Wenn irgendein einzelner Faktor auf der linken Seite der Gleichung gleich ist, dann ist der ganze Ausdruck gleich .
Schritt 3.4
Setze gleich .
Schritt 3.5
Setze gleich und löse nach auf.
Schritt 3.5.1
Setze gleich .
Schritt 3.5.2
Löse nach auf.
Schritt 3.5.2.1
Addiere zu beiden Seiten der Gleichung.
Schritt 3.5.2.2
Ziehe die angegebene Wurzel auf beiden Seiten der Gleichung, um den Exponenten auf der linken Seite zu eliminieren.
Schritt 3.5.2.3
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 3.5.2.3.1
Verwende zunächst den positiven Wert des , um die erste Lösung zu finden.
Schritt 3.5.2.3.2
Als Nächstes verwende den negativen Wert von , um die zweite Lösung zu finden.
Schritt 3.5.2.3.3
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 3.6
Die endgültige Lösung sind alle Werte, die wahr machen.
Schritt 4
Die Werte, die die Ableitung gleich machen, sind .
Schritt 5
Teile in separate Intervalle um die -Werte herum, sodass die Ableitung gleich oder nicht definiert ist.
Schritt 6
Schritt 6.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 6.2
Vereinfache das Ergebnis.
Schritt 6.2.1
Vereinfache jeden Term.
Schritt 6.2.1.1
Potenziere mit .
Schritt 6.2.1.2
Mutltipliziere mit .
Schritt 6.2.1.3
Mutltipliziere mit .
Schritt 6.2.2
Subtrahiere von .
Schritt 6.2.3
Die endgültige Lösung ist .
Schritt 6.3
Bei ist die Ableitung . Da dies positiv ist, steigt die Funktion im Intervall an.
Ansteigend im Intervall , da
Ansteigend im Intervall , da
Schritt 7
Schritt 7.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 7.2
Vereinfache das Ergebnis.
Schritt 7.2.1
Vereinfache jeden Term.
Schritt 7.2.1.1
Potenziere mit .
Schritt 7.2.1.2
Mutltipliziere mit .
Schritt 7.2.1.3
Mutltipliziere mit .
Schritt 7.2.2
Subtrahiere von .
Schritt 7.2.3
Die endgültige Lösung ist .
Schritt 7.3
Bei ist die Ableitung . Da dies negativ ist, nimmt die Funktion im Intervall ab.
Abfallend im Intervall da
Abfallend im Intervall da
Schritt 8
Schritt 8.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 8.2
Vereinfache das Ergebnis.
Schritt 8.2.1
Vereinfache jeden Term.
Schritt 8.2.1.1
Potenziere mit .
Schritt 8.2.1.2
Mutltipliziere mit .
Schritt 8.2.1.3
Mutltipliziere mit .
Schritt 8.2.2
Addiere und .
Schritt 8.2.3
Die endgültige Lösung ist .
Schritt 8.3
Bei ist die Ableitung . Da dies positiv ist, steigt die Funktion im Intervall an.
Ansteigend im Intervall , da
Ansteigend im Intervall , da
Schritt 9
Schritt 9.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 9.2
Vereinfache das Ergebnis.
Schritt 9.2.1
Vereinfache jeden Term.
Schritt 9.2.1.1
Potenziere mit .
Schritt 9.2.1.2
Mutltipliziere mit .
Schritt 9.2.1.3
Mutltipliziere mit .
Schritt 9.2.2
Addiere und .
Schritt 9.2.3
Die endgültige Lösung ist .
Schritt 9.3
Bei ist die Ableitung . Da dies negativ ist, nimmt die Funktion im Intervall ab.
Abfallend im Intervall da
Abfallend im Intervall da
Schritt 10
Liste die Intervalle auf, in denen die Funktion ansteigt und in denen sie abfällt.
Ansteigend im Intervall:
Abfallend im Intervall:
Schritt 11