Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schreibe als Funktion.
Schritt 2
Die Funktion kann bestimmt werden, indem das unbestimmte Integral der Ableitung ermittelt wird.
Schritt 3
Stelle das Integral auf, um zu lösen.
Schritt 4
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 5
Zerlege das einzelne Integral in mehrere Integrale.
Schritt 6
Das Integral von nach ist .
Schritt 7
Schritt 7.1
Es sei . Ermittle .
Schritt 7.1.1
Differenziere .
Schritt 7.1.2
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 7.1.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 7.1.4
Mutltipliziere mit .
Schritt 7.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 8
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 9
Das Integral von nach ist .
Schritt 10
Vereinfache.
Schritt 11
Ersetze alle durch .
Schritt 12
Schritt 12.1
Wende das Distributivgesetz an.
Schritt 12.2
Kombiniere und .
Schritt 12.3
Kombiniere und .
Schritt 13
Stelle die Terme um.
Schritt 14
Die Lösung ist die Stammfunktion der Funktion .