Analysis Beispiele

Ermittle die Stammfunktion (8x^3)e^(x^4)
Schritt 1
Schreibe als Funktion.
Schritt 2
Die Funktion kann bestimmt werden, indem das unbestimmte Integral der Ableitung ermittelt wird.
Schritt 3
Stelle das Integral auf, um zu lösen.
Schritt 4
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 5
Sei . Dann ist , folglich . Forme um unter Verwendung von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Es sei . Ermittle .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1.1
Differenziere .
Schritt 5.1.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 5.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 6
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Schreibe als um.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1.1
Benutze , um als neu zu schreiben.
Schritt 6.1.2
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 6.1.3
Kombiniere und .
Schritt 6.1.4
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1.4.1
Faktorisiere aus heraus.
Schritt 6.1.4.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1.4.2.1
Faktorisiere aus heraus.
Schritt 6.1.4.2.2
Kürze den gemeinsamen Faktor.
Schritt 6.1.4.2.3
Forme den Ausdruck um.
Schritt 6.1.4.2.4
Dividiere durch .
Schritt 6.2
Kombiniere und .
Schritt 6.3
Kombiniere und .
Schritt 7
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 8
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.1
Kombiniere und .
Schritt 8.2
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 8.2.1
Faktorisiere aus heraus.
Schritt 8.2.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.2.2.1
Faktorisiere aus heraus.
Schritt 8.2.2.2
Kürze den gemeinsamen Faktor.
Schritt 8.2.2.3
Forme den Ausdruck um.
Schritt 8.2.2.4
Dividiere durch .
Schritt 9
Sei . Dann ist , folglich . Forme um unter Verwendung von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 9.1
Es sei . Ermittle .
Tippen, um mehr Schritte zu sehen ...
Schritt 9.1.1
Differenziere .
Schritt 9.1.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 9.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 10
Kombiniere und .
Schritt 11
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 12
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 12.1
Kombiniere und .
Schritt 12.2
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 12.2.1
Faktorisiere aus heraus.
Schritt 12.2.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 12.2.2.1
Faktorisiere aus heraus.
Schritt 12.2.2.2
Kürze den gemeinsamen Faktor.
Schritt 12.2.2.3
Forme den Ausdruck um.
Schritt 12.2.2.4
Dividiere durch .
Schritt 13
Das Integral von nach ist .
Schritt 14
Vereinfache.
Schritt 15
Setze für jede eingesetzte Integrationsvariable neu ein.
Tippen, um mehr Schritte zu sehen ...
Schritt 15.1
Ersetze alle durch .
Schritt 15.2
Ersetze alle durch .
Schritt 16
Die Lösung ist die Stammfunktion der Funktion .