Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Differenziere unter Anwendung der Produktregel, die besagt, dass gleich ist mit und .
Schritt 1.2
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 1.2.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 1.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.2.3
Ersetze alle durch .
Schritt 1.3
Differenziere.
Schritt 1.3.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.3.2
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.3.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.3.4
Mutltipliziere mit .
Schritt 1.3.5
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.3.6
Vereinfache den Ausdruck.
Schritt 1.3.6.1
Addiere und .
Schritt 1.3.6.2
Mutltipliziere mit .
Schritt 1.3.7
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.3.8
Mutltipliziere mit .
Schritt 1.4
Vereinfache.
Schritt 1.4.1
Faktorisiere aus heraus.
Schritt 1.4.1.1
Faktorisiere aus heraus.
Schritt 1.4.1.2
Faktorisiere aus heraus.
Schritt 1.4.1.3
Faktorisiere aus heraus.
Schritt 1.4.2
Vereine die Terme
Schritt 1.4.2.1
Bringe auf die linke Seite von .
Schritt 1.4.2.2
Addiere und .
Schritt 2
Schritt 2.1
Differenziere unter Anwendung der Produktregel, die besagt, dass gleich ist mit und .
Schritt 2.2
Differenziere.
Schritt 2.2.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.2.2
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.2.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.2.4
Mutltipliziere mit .
Schritt 2.2.5
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 2.2.6
Vereinfache den Ausdruck.
Schritt 2.2.6.1
Addiere und .
Schritt 2.2.6.2
Bringe auf die linke Seite von .
Schritt 2.3
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 2.3.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 2.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.3.3
Ersetze alle durch .
Schritt 2.4
Differenziere.
Schritt 2.4.1
Bringe auf die linke Seite von .
Schritt 2.4.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.4.3
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.4.4
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.4.5
Mutltipliziere mit .
Schritt 2.4.6
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 2.4.7
Vereinfache den Ausdruck.
Schritt 2.4.7.1
Addiere und .
Schritt 2.4.7.2
Mutltipliziere mit .
Schritt 2.5
Vereinfache.
Schritt 2.5.1
Wende das Distributivgesetz an.
Schritt 2.5.2
Mutltipliziere mit .
Schritt 2.5.3
Mutltipliziere mit .
Schritt 2.5.4
Faktorisiere aus heraus.
Schritt 2.5.4.1
Faktorisiere aus heraus.
Schritt 2.5.4.2
Faktorisiere aus heraus.
Schritt 2.5.4.3
Faktorisiere aus heraus.