Analysis Beispiele

a=0에서 선형화 구하기 f(x) = cube root of 1+x , a=0
,
Schritt 1
Betrachte die Funktion, die verwendet wird, um die Linearisierung bei zu bestimmen.
Schritt 2
Setze den Wert von in die Linearisierungsfunktion ein.
Schritt 3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 3.2
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1
Entferne die Klammern.
Schritt 3.2.2
Addiere und .
Schritt 3.2.3
Jede Wurzel von ist .
Schritt 4
Bestimme die Ableitung und berechne sie bei .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Ermittele die Ableitung von .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.1
Benutze , um als neu zu schreiben.
Schritt 4.1.2
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.2.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 4.1.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 4.1.2.3
Ersetze alle durch .
Schritt 4.1.3
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 4.1.4
Kombiniere und .
Schritt 4.1.5
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 4.1.6
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.6.1
Mutltipliziere mit .
Schritt 4.1.6.2
Subtrahiere von .
Schritt 4.1.7
Kombiniere Brüche.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.7.1
Ziehe das Minuszeichen vor den Bruch.
Schritt 4.1.7.2
Kombiniere und .
Schritt 4.1.7.3
Bringe in den Nenner mit Hilfe der Regel des negativen Exponenten .
Schritt 4.1.8
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 4.1.9
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 4.1.10
Addiere und .
Schritt 4.1.11
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 4.1.12
Mutltipliziere mit .
Schritt 4.2
Ersetze in dem Ausdruck die Variable durch .
Schritt 4.3
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.1
Entferne die Klammern.
Schritt 4.3.2
Vereinfache den Nenner.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.2.1
Addiere und .
Schritt 4.3.2.2
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 4.3.3
Mutltipliziere mit .
Schritt 5
Setze die Komponenten in die Linearisierungsfunktion ein, um die Linearisierung bei zu ermitteln.
Schritt 6
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Subtrahiere von .
Schritt 6.2
Kombiniere und .
Schritt 7