Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schreibe als Funktion.
Schritt 2
Die Funktion kann bestimmt werden, indem das unbestimmte Integral der Ableitung ermittelt wird.
Schritt 3
Stelle das Integral auf, um zu lösen.
Schritt 4
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 5
Schritt 5.1
Es sei . Ermittle .
Schritt 5.1.1
Differenziere .
Schritt 5.1.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 5.1.3
Berechne .
Schritt 5.1.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 5.1.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 5.1.3.3
Mutltipliziere mit .
Schritt 5.1.4
Differenziere unter Anwendung der Konstantenregel.
Schritt 5.1.4.1
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 5.1.4.2
Addiere und .
Schritt 5.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 6
Schritt 6.1
Mutltipliziere mit .
Schritt 6.2
Bringe auf die linke Seite von .
Schritt 7
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 8
Schritt 8.1
Vereinfache.
Schritt 8.1.1
Kombiniere und .
Schritt 8.1.2
Kürze den gemeinsamen Teiler von und .
Schritt 8.1.2.1
Faktorisiere aus heraus.
Schritt 8.1.2.2
Kürze die gemeinsamen Faktoren.
Schritt 8.1.2.2.1
Faktorisiere aus heraus.
Schritt 8.1.2.2.2
Kürze den gemeinsamen Faktor.
Schritt 8.1.2.2.3
Forme den Ausdruck um.
Schritt 8.1.2.2.4
Dividiere durch .
Schritt 8.2
Wende die grundlegenden Potenzregeln an.
Schritt 8.2.1
Bringe aus dem Nenner durch Potenzieren mit .
Schritt 8.2.2
Multipliziere die Exponenten in .
Schritt 8.2.2.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 8.2.2.2
Mutltipliziere mit .
Schritt 9
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 10
Schritt 10.1
Vereinfache.
Schritt 10.1.1
Kombiniere und .
Schritt 10.1.2
Bringe in den Nenner mit Hilfe der Regel des negativen Exponenten .
Schritt 10.2
Vereinfache.
Schritt 10.3
Vereinfache.
Schritt 10.3.1
Mutltipliziere mit .
Schritt 10.3.2
Kombiniere und .
Schritt 10.3.3
Kürze den gemeinsamen Teiler von und .
Schritt 10.3.3.1
Faktorisiere aus heraus.
Schritt 10.3.3.2
Kürze die gemeinsamen Faktoren.
Schritt 10.3.3.2.1
Faktorisiere aus heraus.
Schritt 10.3.3.2.2
Kürze den gemeinsamen Faktor.
Schritt 10.3.3.2.3
Forme den Ausdruck um.
Schritt 10.3.4
Ziehe das Minuszeichen vor den Bruch.
Schritt 11
Ersetze alle durch .
Schritt 12
Die Lösung ist die Stammfunktion der Funktion .