Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Bilde den Grenzwert für den Zähler und den Grenzwert für den Nenner.
Schritt 1.2
Da der Logarithmus gegen unendlich geht, geht der Wert gegen .
Schritt 1.3
Da der Exponent gegen geht, nähert sich die Größe an.
Schritt 1.4
Unendlich durch Unendlich geteilt ist nicht definiert.
Undefiniert
Schritt 2
Da unbestimmt ist, wende die Regel von L'Hospital an. Die Regel von L'Hospital besagt, dass der Grenzwert eines Quotienten von Funktionen gleich dem Grenzwert des Quotienten ihrer Ableitungen ist.
Schritt 3
Schritt 3.1
Differenziere den Zähler und Nenner.
Schritt 3.2
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 3.2.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 3.2.2
Die Ableitung von nach ist .
Schritt 3.2.3
Ersetze alle durch .
Schritt 3.3
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.4
Kombiniere und .
Schritt 3.5
Kürze den gemeinsamen Faktor von .
Schritt 3.5.1
Kürze den gemeinsamen Faktor.
Schritt 3.5.2
Forme den Ausdruck um.
Schritt 3.6
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.7
Mutltipliziere mit .
Schritt 3.8
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 3.8.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 3.8.2
Differenziere unter Anwendung der Exponentialregel, die besagt, dass gleich ist, wobei =.
Schritt 3.8.3
Ersetze alle durch .
Schritt 3.9
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.10
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.11
Mutltipliziere mit .
Schritt 3.12
Bringe auf die linke Seite von .
Schritt 3.13
Mutltipliziere mit .
Schritt 4
Multipliziere den Zähler mit dem Kehrwert des Nenners.
Schritt 5
Schritt 5.1
Mutltipliziere mit .
Schritt 5.2
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 6
Da sein Zähler sich einer reellen Zahl nähert, während sein Nenner unbegrenzt ist, nähert sich der Bruch .
Schritt 7
Mutltipliziere mit .