Analysis Beispiele

Berechne unter Anwendung der Regel von de l’Hospital Grenzwert von (x^4)/(3x^2-7x), wenn x gegen infinity geht
Schritt 1
Berechne den Grenzwert des Zählers und den Grenzwert des Nenners.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Bilde den Grenzwert für den Zähler und den Grenzwert für den Nenner.
Schritt 1.2
Der Grenzwert im Unendlichen eines Polynoms, dessen Leitkoeffizient positiv ist, ist unendlich.
Schritt 1.3
Der Grenzwert im Unendlichen eines Polynoms, dessen Leitkoeffizient positiv ist, ist unendlich.
Schritt 1.4
Unendlich durch Unendlich geteilt ist nicht definiert.
Undefiniert
Schritt 2
Da unbestimmt ist, wende die Regel von L'Hospital an. Die Regel von L'Hospital besagt, dass der Grenzwert eines Quotienten von Funktionen gleich dem Grenzwert des Quotienten ihrer Ableitungen ist.
Schritt 3
Bestimme die Ableitung des Zählers und des Nenners.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Differenziere den Zähler und Nenner.
Schritt 3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.3
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 3.4
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.4.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.4.3
Mutltipliziere mit .
Schritt 3.5
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.5.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.5.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.5.3
Mutltipliziere mit .
Schritt 4
Teile den Zähler und Nenner durch die höchste Potenz von im Nenner, was ist.
Schritt 5
Vereinfache Terme.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1.1
Faktorisiere aus heraus.
Schritt 5.1.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1.2.1
Potenziere mit .
Schritt 5.1.2.2
Faktorisiere aus heraus.
Schritt 5.1.2.3
Kürze den gemeinsamen Faktor.
Schritt 5.1.2.4
Forme den Ausdruck um.
Schritt 5.1.2.5
Dividiere durch .
Schritt 5.2
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 5.2.1.2
Dividiere durch .
Schritt 5.2.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 6
Da gegen geht, nähert sich der Bruch an.
Schritt 7
Da sein Zähler ohne Grenze ist, während der Nenner gegen eine Konstante geht, geht der Bruch gegen unendlich.