Analysis Beispiele

미분 구하기 - d/d@VAR f(x)=2x- natürlicher Logarithmus von 4x-6
Schritt 1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.3
Mutltipliziere mit .
Schritt 3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.2
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 3.2.2
Die Ableitung von nach ist .
Schritt 3.2.3
Ersetze alle durch .
Schritt 3.3
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 3.4
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.5
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.6
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 3.7
Mutltipliziere mit .
Schritt 3.8
Addiere und .
Schritt 3.9
Kombiniere und .
Schritt 3.10
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.10.1
Faktorisiere aus heraus.
Schritt 3.10.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.10.2.1
Faktorisiere aus heraus.
Schritt 3.10.2.2
Faktorisiere aus heraus.
Schritt 3.10.2.3
Faktorisiere aus heraus.
Schritt 3.10.2.4
Kürze den gemeinsamen Faktor.
Schritt 3.10.2.5
Forme den Ausdruck um.
Schritt 4
Vereine die Terme
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 4.2
Vereinige die Zähler über dem gemeinsamen Nenner.