Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2
Schritt 2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.2
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 2.2.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 2.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.2.3
Ersetze alle durch .
Schritt 2.3
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.4
Die Ableitung von nach ist .
Schritt 2.5
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 2.6
Addiere und .
Schritt 2.7
Kombiniere und .
Schritt 2.8
Kombiniere und .
Schritt 2.9
Kombiniere und .
Schritt 2.10
Mutltipliziere mit .
Schritt 3
Schritt 3.1
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 3.1.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 3.1.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.1.3
Ersetze alle durch .
Schritt 3.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 3.3
Die Ableitung von nach ist .
Schritt 3.4
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 3.5
Addiere und .
Schritt 3.6
Kombiniere und .
Schritt 3.7
Kombiniere und .
Schritt 4
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 5
Schritt 5.1
Vereine die Terme
Schritt 5.1.1
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 5.1.2
Addiere und .
Schritt 5.2
Vereinfache den Zähler.
Schritt 5.2.1
Faktorisiere aus heraus.
Schritt 5.2.1.1
Faktorisiere aus heraus.
Schritt 5.2.1.2
Faktorisiere aus heraus.
Schritt 5.2.1.3
Faktorisiere aus heraus.
Schritt 5.2.2
Wende das Distributivgesetz an.
Schritt 5.2.3
Mutltipliziere mit .
Schritt 5.2.4
Addiere und .