Analysis Beispiele

미분 구하기 - d/d@VAR g(x)=cot(2 Quadratwurzel von x)^2+ Quadratwurzel von tan(x)-1
Schritt 1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Benutze , um als neu zu schreiben.
Schritt 2.2
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 2.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.2.3
Ersetze alle durch .
Schritt 2.3
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 2.3.2
Die Ableitung von nach ist .
Schritt 2.3.3
Ersetze alle durch .
Schritt 2.4
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.5
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.6
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 2.7
Kombiniere und .
Schritt 2.8
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 2.9
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.9.1
Mutltipliziere mit .
Schritt 2.9.2
Subtrahiere von .
Schritt 2.10
Ziehe das Minuszeichen vor den Bruch.
Schritt 2.11
Kombiniere und .
Schritt 2.12
Kombiniere und .
Schritt 2.13
Bringe in den Nenner mit Hilfe der Regel des negativen Exponenten .
Schritt 2.14
Kürze den gemeinsamen Faktor.
Schritt 2.15
Forme den Ausdruck um.
Schritt 2.16
Kombiniere und .
Schritt 2.17
Mutltipliziere mit .
Schritt 2.18
Kombiniere und .
Schritt 2.19
Kombiniere und .
Schritt 2.20
Bringe auf die linke Seite von .
Schritt 2.21
Ziehe das Minuszeichen vor den Bruch.
Schritt 3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Benutze , um als neu zu schreiben.
Schritt 3.2
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 3.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.2.3
Ersetze alle durch .
Schritt 3.3
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 3.4
Die Ableitung von nach ist .
Schritt 3.5
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 3.6
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 3.7
Kombiniere und .
Schritt 3.8
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 3.9
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.9.1
Mutltipliziere mit .
Schritt 3.9.2
Subtrahiere von .
Schritt 3.10
Ziehe das Minuszeichen vor den Bruch.
Schritt 3.11
Addiere und .
Schritt 3.12
Kombiniere und .
Schritt 3.13
Kombiniere und .
Schritt 3.14
Bringe in den Nenner mit Hilfe der Regel des negativen Exponenten .
Schritt 4
Stelle die Terme um.