Analysis Beispiele

미분 구하기 - d/d@VAR f(x) = natürlicher Logarithmus von x+5+ natürlicher Logarithmus von 2x-1+ natürlicher Logarithmus von 4-x
Schritt 1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 2.1.2
Die Ableitung von nach ist .
Schritt 2.1.3
Ersetze alle durch .
Schritt 2.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.4
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 2.5
Addiere und .
Schritt 2.6
Mutltipliziere mit .
Schritt 3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 3.1.2
Die Ableitung von nach ist .
Schritt 3.1.3
Ersetze alle durch .
Schritt 3.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 3.3
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.4
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.5
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 3.6
Mutltipliziere mit .
Schritt 3.7
Addiere und .
Schritt 3.8
Kombiniere und .
Schritt 4
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 4.1.2
Die Ableitung von nach ist .
Schritt 4.1.3
Ersetze alle durch .
Schritt 4.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 4.3
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 4.4
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 4.5
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 4.6
Mutltipliziere mit .
Schritt 4.7
Subtrahiere von .
Schritt 4.8
Kombiniere und .
Schritt 4.9
Ziehe das Minuszeichen vor den Bruch.
Schritt 5
Vereine die Terme
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 5.2
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 5.3
Schreibe jeden Ausdruck mit einem gemeinsamen Nenner von , indem du jeden mit einem entsprechenden Faktor von multiplizierst.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.1
Mutltipliziere mit .
Schritt 5.3.2
Mutltipliziere mit .
Schritt 5.3.3
Stelle die Faktoren von um.
Schritt 5.4
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 5.5
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 5.6
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 5.7
Schreibe jeden Ausdruck mit einem gemeinsamen Nenner von , indem du jeden mit einem entsprechenden Faktor von multiplizierst.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.7.1
Mutltipliziere mit .
Schritt 5.7.2
Mutltipliziere mit .
Schritt 5.7.3
Stelle die Faktoren von um.
Schritt 5.7.4
Stelle die Faktoren von um.
Schritt 5.8
Vereinige die Zähler über dem gemeinsamen Nenner.