Analysis Beispiele

미분 구하기 - d/dx xe^(-1/x)
Schritt 1
Differenziere unter Anwendung der Produktregel, die besagt, dass gleich ist mit und .
Schritt 2
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 2.2
Differenziere unter Anwendung der Exponentialregel, die besagt, dass gleich ist, wobei =.
Schritt 2.3
Ersetze alle durch .
Schritt 3
Differenziere unter Anwendung der Produktregel, die besagt, dass gleich ist mit und .
Schritt 4
Differenziere.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Schreibe als um.
Schritt 4.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 4.3
Multipliziere.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.1
Mutltipliziere mit .
Schritt 4.3.2
Mutltipliziere mit .
Schritt 4.4
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 4.5
Vereinfache den Ausdruck.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.5.1
Mutltipliziere mit .
Schritt 4.5.2
Addiere und .
Schritt 5
Potenziere mit .
Schritt 6
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 7
Addiere und .
Schritt 8
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 9
Mutltipliziere mit .
Schritt 10
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 10.1
Stelle die Terme um.
Schritt 10.2
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 10.2.1
Schreibe den Ausdruck um mithilfe der Regel des negativen Exponenten .
Schritt 10.2.2
Kombiniere und .