Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Differenziere.
Schritt 1.1.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.1.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.2
Berechne .
Schritt 1.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.2.2
Differenziere unter Anwendung der Quotientenregel, die besagt, dass gleich ist mit und .
Schritt 1.2.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.2.4
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.2.5
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.2.6
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.2.7
Mutltipliziere mit .
Schritt 1.2.8
Addiere und .
Schritt 1.2.9
Mutltipliziere mit .
Schritt 1.2.10
Subtrahiere von .
Schritt 1.2.11
Addiere und .
Schritt 1.2.12
Kombiniere und .
Schritt 1.2.13
Mutltipliziere mit .
Schritt 1.2.14
Ziehe das Minuszeichen vor den Bruch.
Schritt 1.3
Stelle die Terme um.
Schritt 2
Schritt 2.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.2
Berechne .
Schritt 2.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.2.2
Schreibe als um.
Schritt 2.2.3
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 2.2.3.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 2.2.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.2.3.3
Ersetze alle durch .
Schritt 2.2.4
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 2.2.4.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 2.2.4.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.2.4.3
Ersetze alle durch .
Schritt 2.2.5
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.2.6
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.2.7
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 2.2.8
Multipliziere die Exponenten in .
Schritt 2.2.8.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 2.2.8.2
Mutltipliziere mit .
Schritt 2.2.9
Addiere und .
Schritt 2.2.10
Mutltipliziere mit .
Schritt 2.2.11
Mutltipliziere mit .
Schritt 2.2.12
Potenziere mit .
Schritt 2.2.13
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 2.2.14
Subtrahiere von .
Schritt 2.2.15
Mutltipliziere mit .
Schritt 2.3
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 2.4
Vereinfache.
Schritt 2.4.1
Schreibe den Ausdruck um mithilfe der Regel des negativen Exponenten .
Schritt 2.4.2
Vereine die Terme
Schritt 2.4.2.1
Kombiniere und .
Schritt 2.4.2.2
Addiere und .
Schritt 3
Um die lokalen Maximum- und Minimumwerte einer Funktion zu ermitteln, setze die Ableitung gleich und löse die Gleichung.
Schritt 4
Schritt 4.1
Bestimme die erste Ableitung.
Schritt 4.1.1
Differenziere.
Schritt 4.1.1.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 4.1.1.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 4.1.2
Berechne .
Schritt 4.1.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 4.1.2.2
Differenziere unter Anwendung der Quotientenregel, die besagt, dass gleich ist mit und .
Schritt 4.1.2.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 4.1.2.4
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 4.1.2.5
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 4.1.2.6
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 4.1.2.7
Mutltipliziere mit .
Schritt 4.1.2.8
Addiere und .
Schritt 4.1.2.9
Mutltipliziere mit .
Schritt 4.1.2.10
Subtrahiere von .
Schritt 4.1.2.11
Addiere und .
Schritt 4.1.2.12
Kombiniere und .
Schritt 4.1.2.13
Mutltipliziere mit .
Schritt 4.1.2.14
Ziehe das Minuszeichen vor den Bruch.
Schritt 4.1.3
Stelle die Terme um.
Schritt 4.2
Die erste Ableitung von nach ist .
Schritt 5
Schritt 5.1
Setze die erste Ableitung gleich .
Schritt 5.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 5.3
Finde den Hauptnenner der Terme in der Gleichung.
Schritt 5.3.1
Den Hauptnenner einer Liste von Werten zu bestimmen, ist das gleiche wie das kgV der Nenner dieser Werte zu bestimmen.
Schritt 5.3.2
Das kleinste gemeinsame Vielfache eines beliebigen Ausdrucks ist der Ausdruck.
Schritt 5.4
Multipliziere jeden Term in mit um die Brüche zu eliminieren.
Schritt 5.4.1
Multipliziere jeden Term in mit .
Schritt 5.4.2
Vereinfache die linke Seite.
Schritt 5.4.2.1
Kürze den gemeinsamen Faktor von .
Schritt 5.4.2.1.1
Bringe das führende Minuszeichen in in den Zähler.
Schritt 5.4.2.1.2
Kürze den gemeinsamen Faktor.
Schritt 5.4.2.1.3
Forme den Ausdruck um.
Schritt 5.5
Löse die Gleichung.
Schritt 5.5.1
Schreibe die Gleichung als um.
Schritt 5.5.2
Teile jeden Ausdruck in durch und vereinfache.
Schritt 5.5.2.1
Teile jeden Ausdruck in durch .
Schritt 5.5.2.2
Vereinfache die linke Seite.
Schritt 5.5.2.2.1
Dividieren zweier negativer Zahlen ergibt eine positive Zahl.
Schritt 5.5.2.2.2
Dividiere durch .
Schritt 5.5.2.3
Vereinfache die rechte Seite.
Schritt 5.5.2.3.1
Dividiere durch .
Schritt 5.5.3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Schritt 5.5.4
Vereinfache .
Schritt 5.5.4.1
Schreibe als um.
Schritt 5.5.4.2
Ziehe Terme aus der Wurzel heraus unter der Annahme positiver reeller Zahlen.
Schritt 5.5.5
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 5.5.5.1
Verwende zunächst den positiven Wert des , um die erste Lösung zu finden.
Schritt 5.5.5.2
Bringe alle Terme, die nicht enthalten, auf die rechte Seite der Gleichung.
Schritt 5.5.5.2.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 5.5.5.2.2
Subtrahiere von .
Schritt 5.5.5.3
Als Nächstes verwende den negativen Wert von , um die zweite Lösung zu finden.
Schritt 5.5.5.4
Bringe alle Terme, die nicht enthalten, auf die rechte Seite der Gleichung.
Schritt 5.5.5.4.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 5.5.5.4.2
Subtrahiere von .
Schritt 5.5.5.5
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 6
Schritt 6.1
Setze den Nenner in gleich , um zu ermitteln, wo der Ausdruck nicht definiert ist.
Schritt 6.2
Löse nach auf.
Schritt 6.2.1
Setze gleich .
Schritt 6.2.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 7
Kritische Punkte zum auswerten.
Schritt 8
Berechne die zweite Ableitung an der Stelle . Wenn die zweite Ableitung positiv ist, dann ist dies ein lokales Minimum. Wenn sie negativ ist, dann ist dies ein lokales Maximum.
Schritt 9
Schritt 9.1
Vereinfache den Nenner.
Schritt 9.1.1
Addiere und .
Schritt 9.1.2
Potenziere mit .
Schritt 9.2
Kürze den gemeinsamen Teiler von und .
Schritt 9.2.1
Faktorisiere aus heraus.
Schritt 9.2.2
Kürze die gemeinsamen Faktoren.
Schritt 9.2.2.1
Faktorisiere aus heraus.
Schritt 9.2.2.2
Kürze den gemeinsamen Faktor.
Schritt 9.2.2.3
Forme den Ausdruck um.
Schritt 10
ist ein lokales Minimum, weil der Wert der zweiten Ableitung positiv ist. Dies wird auch der Prüfung der zweiten Ableitung genannt.
ist ein lokales Minimum
Schritt 11
Schritt 11.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 11.2
Vereinfache das Ergebnis.
Schritt 11.2.1
Vereinfache jeden Term.
Schritt 11.2.1.1
Kürze den gemeinsamen Teiler von und .
Schritt 11.2.1.1.1
Faktorisiere aus heraus.
Schritt 11.2.1.1.2
Kürze die gemeinsamen Faktoren.
Schritt 11.2.1.1.2.1
Faktorisiere aus heraus.
Schritt 11.2.1.1.2.2
Faktorisiere aus heraus.
Schritt 11.2.1.1.2.3
Faktorisiere aus heraus.
Schritt 11.2.1.1.2.4
Kürze den gemeinsamen Faktor.
Schritt 11.2.1.1.2.5
Forme den Ausdruck um.
Schritt 11.2.1.2
Mutltipliziere mit .
Schritt 11.2.1.3
Addiere und .
Schritt 11.2.1.4
Dividiere durch .
Schritt 11.2.1.5
Mutltipliziere mit .
Schritt 11.2.2
Subtrahiere von .
Schritt 11.2.3
Die endgültige Lösung ist .
Schritt 12
Berechne die zweite Ableitung an der Stelle . Wenn die zweite Ableitung positiv ist, dann ist dies ein lokales Minimum. Wenn sie negativ ist, dann ist dies ein lokales Maximum.
Schritt 13
Schritt 13.1
Vereinfache den Nenner.
Schritt 13.1.1
Addiere und .
Schritt 13.1.2
Potenziere mit .
Schritt 13.2
Vereinfache den Ausdruck durch Kürzen der gemeinsamen Faktoren.
Schritt 13.2.1
Kürze den gemeinsamen Teiler von und .
Schritt 13.2.1.1
Faktorisiere aus heraus.
Schritt 13.2.1.2
Kürze die gemeinsamen Faktoren.
Schritt 13.2.1.2.1
Faktorisiere aus heraus.
Schritt 13.2.1.2.2
Kürze den gemeinsamen Faktor.
Schritt 13.2.1.2.3
Forme den Ausdruck um.
Schritt 13.2.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 14
ist ein lokales Maximum, weil der Wert der zweiten Ableitung negativ ist. Dies wird auch Prüfung der zweiten Ableitung genannt.
ist ein lokales Maximum
Schritt 15
Schritt 15.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 15.2
Vereinfache das Ergebnis.
Schritt 15.2.1
Vereinfache jeden Term.
Schritt 15.2.1.1
Kürze den gemeinsamen Teiler von und .
Schritt 15.2.1.1.1
Faktorisiere aus heraus.
Schritt 15.2.1.1.2
Kürze die gemeinsamen Faktoren.
Schritt 15.2.1.1.2.1
Faktorisiere aus heraus.
Schritt 15.2.1.1.2.2
Faktorisiere aus heraus.
Schritt 15.2.1.1.2.3
Faktorisiere aus heraus.
Schritt 15.2.1.1.2.4
Kürze den gemeinsamen Faktor.
Schritt 15.2.1.1.2.5
Forme den Ausdruck um.
Schritt 15.2.1.2
Mutltipliziere mit .
Schritt 15.2.1.3
Addiere und .
Schritt 15.2.1.4
Dividiere durch .
Schritt 15.2.1.5
Mutltipliziere mit .
Schritt 15.2.2
Subtrahiere von .
Schritt 15.2.3
Die endgültige Lösung ist .
Schritt 16
Dies sind die lokalen Extrema für .
ist ein lokales Minimum
ist ein lokales Maximum
Schritt 17