Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.2
Die Ableitung von nach ist .
Schritt 1.3
Berechne .
Schritt 1.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.3.3
Mutltipliziere mit .
Schritt 1.4
Vereinfache.
Schritt 1.4.1
Stelle die Terme um.
Schritt 1.4.2
Stelle und um.
Schritt 1.4.3
Wende den trigonometrischen Pythagoras an.
Schritt 2
Schritt 2.1
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 2.1.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 2.1.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.1.3
Ersetze alle durch .
Schritt 2.2
Die Ableitung von nach ist .
Schritt 2.3
Stelle die Faktoren von um.
Schritt 3
Um die lokalen Maximum- und Minimumwerte einer Funktion zu ermitteln, setze die Ableitung gleich und löse die Gleichung.
Schritt 4
Ziehe die angegebene Wurzel auf beiden Seiten der Gleichung, um den Exponenten auf der linken Seite zu eliminieren.
Schritt 5
Schritt 5.1
Schreibe als um.
Schritt 5.2
Ziehe Terme aus der Wurzel heraus unter der Annahme positiver reeller Zahlen.
Schritt 5.3
Plus oder Minus ist .
Schritt 6
Wende den inversen Tangens auf beide Seiten der Gleichung an, um aus dem Tangens herauszuziehen.
Schritt 7
Schritt 7.1
Der genau Wert von ist .
Schritt 8
Die Tangensfunktion ist im ersten und dritten Quadranten positiv. Um die zweite Lösung zu finden, addiere den Referenzwinkel von , um die Lösung im vierten Quadranten zu ermitteln.
Schritt 9
Addiere und .
Schritt 10
Die Lösung der Gleichung .
Schritt 11
Berechne die zweite Ableitung an der Stelle . Wenn die zweite Ableitung positiv ist, dann ist dies ein lokales Minimum. Wenn sie negativ ist, dann ist dies ein lokales Maximum.
Schritt 12
Schritt 12.1
Der genau Wert von ist .
Schritt 12.2
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 12.3
Mutltipliziere mit .
Schritt 12.4
Der genau Wert von ist .
Schritt 12.5
Mutltipliziere mit .
Schritt 13
Da der erste Ableitungstest nicht erfolgreich war, gibt es kein lokales Extremum.
Keine lokalen Extrema
Schritt 14