Analysis Beispiele

Finde die lokalen Maxima und Minima g(x) = square root of x^2-16x+64
Schritt 1
Ermittle die erste Ableitung der Funktion.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Schreibe als um.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1
Faktorisiere unter Verwendung der binomischen Formeln.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1.1
Schreibe als um.
Schritt 1.1.1.2
Überprüfe, ob der mittlere Term das Zweifache des Produkts der Zahlen ist, die im ersten Term und im dritten Term quadriert werden.
Schritt 1.1.1.3
Schreibe das Polynom neu.
Schritt 1.1.1.4
Faktorisiere mithilfe der trinomischen Formel für das perfekte Quadrat , wobei und .
Schritt 1.1.2
Ziehe Terme aus der Wurzel heraus unter der Annahme positiver reeller Zahlen.
Schritt 1.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.4
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.5
Addiere und .
Schritt 2
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 3
Um die lokalen Maximum- und Minimumwerte einer Funktion zu ermitteln, setze die Ableitung gleich und löse die Gleichung.
Schritt 4
Da es keinen Wert von gibt, der die erste Ableitung gleich macht, gibt es keine lokalen Extrema.
Keine lokalen Extrema
Schritt 5
Keine lokalen Extrema
Schritt 6