Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Benutze , um als neu zu schreiben.
Schritt 1.2
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.4
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 1.5
Kombiniere und .
Schritt 1.6
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 1.7
Vereinfache den Zähler.
Schritt 1.7.1
Mutltipliziere mit .
Schritt 1.7.2
Subtrahiere von .
Schritt 1.8
Ziehe das Minuszeichen vor den Bruch.
Schritt 1.9
Kombiniere und .
Schritt 1.10
Kombiniere und .
Schritt 1.11
Bringe in den Nenner mit Hilfe der Regel des negativen Exponenten .
Schritt 1.12
Kürze den gemeinsamen Faktor.
Schritt 1.13
Forme den Ausdruck um.
Schritt 2
Schritt 2.1
Wende die grundlegenden Potenzregeln an.
Schritt 2.1.1
Schreibe als um.
Schritt 2.1.2
Multipliziere die Exponenten in .
Schritt 2.1.2.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 2.1.2.2
Multipliziere .
Schritt 2.1.2.2.1
Kombiniere und .
Schritt 2.1.2.2.2
Mutltipliziere mit .
Schritt 2.1.2.3
Ziehe das Minuszeichen vor den Bruch.
Schritt 2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.3
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 2.4
Kombiniere und .
Schritt 2.5
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 2.6
Vereinfache den Zähler.
Schritt 2.6.1
Mutltipliziere mit .
Schritt 2.6.2
Subtrahiere von .
Schritt 2.7
Ziehe das Minuszeichen vor den Bruch.
Schritt 2.8
Vereinfache.
Schritt 2.8.1
Schreibe den Ausdruck um mithilfe der Regel des negativen Exponenten .
Schritt 2.8.2
Vereine die Terme
Schritt 2.8.2.1
Mutltipliziere mit .
Schritt 2.8.2.2
Bringe auf die linke Seite von .
Schritt 3
Um die lokalen Maximum- und Minimumwerte einer Funktion zu ermitteln, setze die Ableitung gleich und löse die Gleichung.
Schritt 4
Schritt 4.1
Bestimme die erste Ableitung.
Schritt 4.1.1
Benutze , um als neu zu schreiben.
Schritt 4.1.2
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 4.1.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 4.1.4
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 4.1.5
Kombiniere und .
Schritt 4.1.6
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 4.1.7
Vereinfache den Zähler.
Schritt 4.1.7.1
Mutltipliziere mit .
Schritt 4.1.7.2
Subtrahiere von .
Schritt 4.1.8
Ziehe das Minuszeichen vor den Bruch.
Schritt 4.1.9
Kombiniere und .
Schritt 4.1.10
Kombiniere und .
Schritt 4.1.11
Bringe in den Nenner mit Hilfe der Regel des negativen Exponenten .
Schritt 4.1.12
Kürze den gemeinsamen Faktor.
Schritt 4.1.13
Forme den Ausdruck um.
Schritt 4.2
Die erste Ableitung von nach ist .
Schritt 5
Schritt 5.1
Setze die erste Ableitung gleich .
Schritt 5.2
Setze den Zähler gleich Null.
Schritt 5.3
Da , gibt es keine Lösungen.
Keine Lösung
Keine Lösung
Schritt 6
Schritt 6.1
Wende die Regel an, um die Potenz als Wurzel umzuschreiben.
Schritt 6.2
Setze den Nenner in gleich , um zu ermitteln, wo der Ausdruck nicht definiert ist.
Schritt 6.3
Löse nach auf.
Schritt 6.3.1
Um die Wurzel auf der linken Seite der Gleichung zu entfernen, erhebe beide Seiten der Gleichung zur . Potenz.
Schritt 6.3.2
Vereinfache jede Seite der Gleichung.
Schritt 6.3.2.1
Benutze , um als neu zu schreiben.
Schritt 6.3.2.2
Vereinfache die linke Seite.
Schritt 6.3.2.2.1
Multipliziere die Exponenten in .
Schritt 6.3.2.2.1.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 6.3.2.2.1.2
Kürze den gemeinsamen Faktor von .
Schritt 6.3.2.2.1.2.1
Kürze den gemeinsamen Faktor.
Schritt 6.3.2.2.1.2.2
Forme den Ausdruck um.
Schritt 6.3.2.3
Vereinfache die rechte Seite.
Schritt 6.3.2.3.1
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 6.3.3
Löse nach auf.
Schritt 6.3.3.1
Ziehe die angegebene Wurzel auf beiden Seiten der Gleichung, um den Exponenten auf der linken Seite zu eliminieren.
Schritt 6.3.3.2
Vereinfache .
Schritt 6.3.3.2.1
Schreibe als um.
Schritt 6.3.3.2.2
Ziehe Terme von unter der Wurzel heraus unter der Annahme reeller Zahlen.
Schritt 6.4
Setze den Radikanden in kleiner als , um zu ermitteln, wo der Ausdruck nicht definiert ist.
Schritt 6.5
Löse nach auf.
Schritt 6.5.1
Ziehe die angegebene Wurzel auf beiden Seiten der Ungleichung, um den Exponenten auf der linken Seite zu eliminieren.
Schritt 6.5.2
Vereinfache die Gleichung.
Schritt 6.5.2.1
Vereinfache die linke Seite.
Schritt 6.5.2.1.1
Ziehe Terme aus der Wurzel heraus.
Schritt 6.5.2.2
Vereinfache die rechte Seite.
Schritt 6.5.2.2.1
Vereinfache .
Schritt 6.5.2.2.1.1
Schreibe als um.
Schritt 6.5.2.2.1.2
Ziehe Terme aus der Wurzel heraus.
Schritt 6.6
Die Gleichung ist nicht definiert, wo der Nenner gleich , das Argument einer Quadratwurzel kleiner als oder das Argument eines Logarithmus kleiner oder gleich ist.
Schritt 7
Kritische Punkte zum auswerten.
Schritt 8
Berechne die zweite Ableitung an der Stelle . Wenn die zweite Ableitung positiv ist, dann ist dies ein lokales Minimum. Wenn sie negativ ist, dann ist dies ein lokales Maximum.
Schritt 9
Schritt 9.1
Vereinfache den Ausdruck.
Schritt 9.1.1
Schreibe als um.
Schritt 9.1.2
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 9.2
Kürze den gemeinsamen Faktor von .
Schritt 9.2.1
Kürze den gemeinsamen Faktor.
Schritt 9.2.2
Forme den Ausdruck um.
Schritt 9.3
Vereinfache den Ausdruck.
Schritt 9.3.1
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 9.3.2
Mutltipliziere mit .
Schritt 9.3.3
Der Ausdruck enthält eine Division durch . Der Ausdruck ist nicht definiert.
Undefiniert
Schritt 9.4
Der Ausdruck enthält eine Division durch . Der Ausdruck ist nicht definiert.
Undefiniert
Undefiniert
Schritt 10
Da der erste Ableitungstest nicht erfolgreich war, gibt es kein lokales Extremum.
Keine lokalen Extrema
Schritt 11