Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Differenziere unter Anwendung der Produktregel, die besagt, dass gleich ist mit und .
Schritt 1.2
Differenziere.
Schritt 1.2.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.2.2
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.2.3
Addiere und .
Schritt 1.2.4
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.2.5
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.2.6
Vereinfache den Ausdruck.
Schritt 1.2.6.1
Mutltipliziere mit .
Schritt 1.2.6.2
Bringe auf die linke Seite von .
Schritt 1.2.6.3
Schreibe als um.
Schritt 1.2.7
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.2.8
Bringe auf die linke Seite von .
Schritt 1.3
Vereinfache.
Schritt 1.3.1
Wende das Distributivgesetz an.
Schritt 1.3.2
Wende das Distributivgesetz an.
Schritt 1.3.3
Vereine die Terme
Schritt 1.3.3.1
Mutltipliziere mit .
Schritt 1.3.3.2
Potenziere mit .
Schritt 1.3.3.3
Potenziere mit .
Schritt 1.3.3.4
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 1.3.3.5
Addiere und .
Schritt 1.3.3.6
Subtrahiere von .
Schritt 2
Schritt 2.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.2
Berechne .
Schritt 2.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.2.3
Mutltipliziere mit .
Schritt 2.3
Berechne .
Schritt 2.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.3.3
Mutltipliziere mit .
Schritt 2.4
Stelle die Terme um.
Schritt 3
Um die lokalen Maximum- und Minimumwerte einer Funktion zu ermitteln, setze die Ableitung gleich und löse die Gleichung.
Schritt 4
Schritt 4.1
Bestimme die erste Ableitung.
Schritt 4.1.1
Differenziere unter Anwendung der Produktregel, die besagt, dass gleich ist mit und .
Schritt 4.1.2
Differenziere.
Schritt 4.1.2.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 4.1.2.2
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 4.1.2.3
Addiere und .
Schritt 4.1.2.4
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 4.1.2.5
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 4.1.2.6
Vereinfache den Ausdruck.
Schritt 4.1.2.6.1
Mutltipliziere mit .
Schritt 4.1.2.6.2
Bringe auf die linke Seite von .
Schritt 4.1.2.6.3
Schreibe als um.
Schritt 4.1.2.7
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 4.1.2.8
Bringe auf die linke Seite von .
Schritt 4.1.3
Vereinfache.
Schritt 4.1.3.1
Wende das Distributivgesetz an.
Schritt 4.1.3.2
Wende das Distributivgesetz an.
Schritt 4.1.3.3
Vereine die Terme
Schritt 4.1.3.3.1
Mutltipliziere mit .
Schritt 4.1.3.3.2
Potenziere mit .
Schritt 4.1.3.3.3
Potenziere mit .
Schritt 4.1.3.3.4
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 4.1.3.3.5
Addiere und .
Schritt 4.1.3.3.6
Subtrahiere von .
Schritt 4.2
Die erste Ableitung von nach ist .
Schritt 5
Schritt 5.1
Setze die erste Ableitung gleich .
Schritt 5.2
Faktorisiere aus heraus.
Schritt 5.2.1
Faktorisiere aus heraus.
Schritt 5.2.2
Faktorisiere aus heraus.
Schritt 5.2.3
Faktorisiere aus heraus.
Schritt 5.3
Wenn irgendein einzelner Faktor auf der linken Seite der Gleichung gleich ist, dann ist der ganze Ausdruck gleich .
Schritt 5.4
Setze gleich .
Schritt 5.5
Setze gleich und löse nach auf.
Schritt 5.5.1
Setze gleich .
Schritt 5.5.2
Löse nach auf.
Schritt 5.5.2.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 5.5.2.2
Teile jeden Ausdruck in durch und vereinfache.
Schritt 5.5.2.2.1
Teile jeden Ausdruck in durch .
Schritt 5.5.2.2.2
Vereinfache die linke Seite.
Schritt 5.5.2.2.2.1
Kürze den gemeinsamen Faktor von .
Schritt 5.5.2.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 5.5.2.2.2.1.2
Dividiere durch .
Schritt 5.5.2.2.3
Vereinfache die rechte Seite.
Schritt 5.5.2.2.3.1
Dividieren zweier negativer Zahlen ergibt eine positive Zahl.
Schritt 5.6
Die endgültige Lösung sind alle Werte, die wahr machen.
Schritt 6
Schritt 6.1
Der Definitionsbereich umfasst alle reellen Zahlen, ausgenommen jene, für die der Ausdruck nicht definiert ist. In diesem Fall gibt es keine reellen Zahlen, für die der Ausdruck nicht definiert ist.
Schritt 7
Kritische Punkte zum auswerten.
Schritt 8
Berechne die zweite Ableitung an der Stelle . Wenn die zweite Ableitung positiv ist, dann ist dies ein lokales Minimum. Wenn sie negativ ist, dann ist dies ein lokales Maximum.
Schritt 9
Schritt 9.1
Mutltipliziere mit .
Schritt 9.2
Addiere und .
Schritt 10
Da der erste Ableitungstest nicht erfolgreich war, gibt es kein lokales Extremum.
Keine lokalen Extrema
Schritt 11