Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schreibe als Funktion.
Schritt 2
Schritt 2.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.2
Berechne .
Schritt 2.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.2.3
Kombiniere und .
Schritt 2.2.4
Mutltipliziere mit .
Schritt 2.2.5
Kombiniere und .
Schritt 2.2.6
Kürze den gemeinsamen Teiler von und .
Schritt 2.2.6.1
Faktorisiere aus heraus.
Schritt 2.2.6.2
Kürze die gemeinsamen Faktoren.
Schritt 2.2.6.2.1
Faktorisiere aus heraus.
Schritt 2.2.6.2.2
Kürze den gemeinsamen Faktor.
Schritt 2.2.6.2.3
Forme den Ausdruck um.
Schritt 2.2.6.2.4
Dividiere durch .
Schritt 2.3
Berechne .
Schritt 2.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.3.3
Mutltipliziere mit .
Schritt 2.3.4
Kombiniere und .
Schritt 2.3.5
Mutltipliziere mit .
Schritt 2.3.6
Kombiniere und .
Schritt 2.3.7
Kürze den gemeinsamen Teiler von und .
Schritt 2.3.7.1
Faktorisiere aus heraus.
Schritt 2.3.7.2
Kürze die gemeinsamen Faktoren.
Schritt 2.3.7.2.1
Faktorisiere aus heraus.
Schritt 2.3.7.2.2
Kürze den gemeinsamen Faktor.
Schritt 2.3.7.2.3
Forme den Ausdruck um.
Schritt 2.3.7.2.4
Dividiere durch .
Schritt 2.4
Berechne .
Schritt 2.4.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.4.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.4.3
Mutltipliziere mit .
Schritt 2.5
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3
Schritt 3.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 3.2
Berechne .
Schritt 3.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.2.3
Mutltipliziere mit .
Schritt 3.3
Berechne .
Schritt 3.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.3.3
Mutltipliziere mit .
Schritt 3.4
Berechne .
Schritt 3.4.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.4.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.4.3
Mutltipliziere mit .
Schritt 3.5
Berechne .
Schritt 3.5.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.5.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.5.3
Mutltipliziere mit .
Schritt 4
Um die lokalen Maximum- und Minimumwerte einer Funktion zu ermitteln, setze die Ableitung gleich und löse die Gleichung.
Schritt 5
Schritt 5.1
Bestimme die erste Ableitung.
Schritt 5.1.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 5.1.2
Berechne .
Schritt 5.1.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 5.1.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 5.1.2.3
Kombiniere und .
Schritt 5.1.2.4
Mutltipliziere mit .
Schritt 5.1.2.5
Kombiniere und .
Schritt 5.1.2.6
Kürze den gemeinsamen Teiler von und .
Schritt 5.1.2.6.1
Faktorisiere aus heraus.
Schritt 5.1.2.6.2
Kürze die gemeinsamen Faktoren.
Schritt 5.1.2.6.2.1
Faktorisiere aus heraus.
Schritt 5.1.2.6.2.2
Kürze den gemeinsamen Faktor.
Schritt 5.1.2.6.2.3
Forme den Ausdruck um.
Schritt 5.1.2.6.2.4
Dividiere durch .
Schritt 5.1.3
Berechne .
Schritt 5.1.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 5.1.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 5.1.3.3
Mutltipliziere mit .
Schritt 5.1.3.4
Kombiniere und .
Schritt 5.1.3.5
Mutltipliziere mit .
Schritt 5.1.3.6
Kombiniere und .
Schritt 5.1.3.7
Kürze den gemeinsamen Teiler von und .
Schritt 5.1.3.7.1
Faktorisiere aus heraus.
Schritt 5.1.3.7.2
Kürze die gemeinsamen Faktoren.
Schritt 5.1.3.7.2.1
Faktorisiere aus heraus.
Schritt 5.1.3.7.2.2
Kürze den gemeinsamen Faktor.
Schritt 5.1.3.7.2.3
Forme den Ausdruck um.
Schritt 5.1.3.7.2.4
Dividiere durch .
Schritt 5.1.4
Berechne .
Schritt 5.1.4.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 5.1.4.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 5.1.4.3
Mutltipliziere mit .
Schritt 5.1.5
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 5.2
Die erste Ableitung von nach ist .
Schritt 6
Schritt 6.1
Setze die erste Ableitung gleich .
Schritt 6.2
Faktorisiere die linke Seite der Gleichung.
Schritt 6.2.1
Faktorisiere aus heraus.
Schritt 6.2.1.1
Faktorisiere aus heraus.
Schritt 6.2.1.2
Faktorisiere aus heraus.
Schritt 6.2.1.3
Faktorisiere aus heraus.
Schritt 6.2.1.4
Faktorisiere aus heraus.
Schritt 6.2.1.5
Faktorisiere aus heraus.
Schritt 6.2.1.6
Faktorisiere aus heraus.
Schritt 6.2.1.7
Faktorisiere aus heraus.
Schritt 6.2.2
Faktorisiere mithilfe des Satzes über rationale Wurzeln.
Schritt 6.2.2.1
Wenn eine Polynomfunktion ganzzahlige Koeffizienten hat, dann hat jede rationale Nullstelle die Form , wobei ein Teiler der Konstanten und ein Teiler des Leitkoeffizienten ist.
Schritt 6.2.2.2
Ermittle jede Kombination von . Dies sind die möglichen Wurzeln der Polynomfunktion.
Schritt 6.2.2.3
Setze ein und vereinfache den Ausdruck. In diesem Fall ist der Ausdruck gleich , folglich ist eine Wurzel des Polynoms.
Schritt 6.2.2.3.1
Setze in das Polynom ein.
Schritt 6.2.2.3.2
Potenziere mit .
Schritt 6.2.2.3.3
Mutltipliziere mit .
Schritt 6.2.2.3.4
Potenziere mit .
Schritt 6.2.2.3.5
Mutltipliziere mit .
Schritt 6.2.2.3.6
Subtrahiere von .
Schritt 6.2.2.3.7
Mutltipliziere mit .
Schritt 6.2.2.3.8
Addiere und .
Schritt 6.2.2.3.9
Addiere und .
Schritt 6.2.2.4
Da eine bekannte Wurzel ist, dividiere das Polynom durch , um das Quotientenpolynom zu bestimmen. Dieses Polynom kann dann verwendet werden, um die restlichen Wurzeln zu finden.
Schritt 6.2.2.5
Dividiere durch .
Schritt 6.2.2.5.1
Stelle die zu dividierenden Polynome auf. Wenn es nicht für jeden Exponenten einen Term gibt, setze einen ein mit dem Wert .
| + | - | - | + |
Schritt 6.2.2.5.2
Dividiere den Term höchster Ordnung im Dividend durch den Term höchster Ordnung im Divisor .
| + | - | - | + |
Schritt 6.2.2.5.3
Multipliziere den neuen Bruchterm mit dem Teiler.
| + | - | - | + | ||||||||
| + | + |
Schritt 6.2.2.5.4
Der Ausdruck muss vom Dividenden abgezogen werden, ändere also alle Vorzeichen in
| + | - | - | + | ||||||||
| - | - |
Schritt 6.2.2.5.5
Addiere nach dem Wechsel der Vorzeichen den letzten Dividenden des ausmultiplizierten Polynoms, um den neuen Dividenden zu finden.
| + | - | - | + | ||||||||
| - | - | ||||||||||
| - |
Schritt 6.2.2.5.6
Ziehe die nächsten Terme vom ursprünglichen Dividenden nach unten in den aktuellen Dividenden.
| + | - | - | + | ||||||||
| - | - | ||||||||||
| - | - |
Schritt 6.2.2.5.7
Dividiere den Term höchster Ordnung im Dividend durch den Term höchster Ordnung im Divisor .
| - | |||||||||||
| + | - | - | + | ||||||||
| - | - | ||||||||||
| - | - |
Schritt 6.2.2.5.8
Multipliziere den neuen Bruchterm mit dem Teiler.
| - | |||||||||||
| + | - | - | + | ||||||||
| - | - | ||||||||||
| - | - | ||||||||||
| - | - |
Schritt 6.2.2.5.9
Der Ausdruck muss vom Dividenden abgezogen werden, ändere also alle Vorzeichen in
| - | |||||||||||
| + | - | - | + | ||||||||
| - | - | ||||||||||
| - | - | ||||||||||
| + | + |
Schritt 6.2.2.5.10
Addiere nach dem Wechsel der Vorzeichen den letzten Dividenden des ausmultiplizierten Polynoms, um den neuen Dividenden zu finden.
| - | |||||||||||
| + | - | - | + | ||||||||
| - | - | ||||||||||
| - | - | ||||||||||
| + | + | ||||||||||
| + |
Schritt 6.2.2.5.11
Ziehe die nächsten Terme vom ursprünglichen Dividenden nach unten in den aktuellen Dividenden.
| - | |||||||||||
| + | - | - | + | ||||||||
| - | - | ||||||||||
| - | - | ||||||||||
| + | + | ||||||||||
| + | + |
Schritt 6.2.2.5.12
Dividiere den Term höchster Ordnung im Dividend durch den Term höchster Ordnung im Divisor .
| - | + | ||||||||||
| + | - | - | + | ||||||||
| - | - | ||||||||||
| - | - | ||||||||||
| + | + | ||||||||||
| + | + |
Schritt 6.2.2.5.13
Multipliziere den neuen Bruchterm mit dem Teiler.
| - | + | ||||||||||
| + | - | - | + | ||||||||
| - | - | ||||||||||
| - | - | ||||||||||
| + | + | ||||||||||
| + | + | ||||||||||
| + | + |
Schritt 6.2.2.5.14
Der Ausdruck muss vom Dividenden abgezogen werden, ändere also alle Vorzeichen in
| - | + | ||||||||||
| + | - | - | + | ||||||||
| - | - | ||||||||||
| - | - | ||||||||||
| + | + | ||||||||||
| + | + | ||||||||||
| - | - |
Schritt 6.2.2.5.15
Addiere nach dem Wechsel der Vorzeichen den letzten Dividenden des ausmultiplizierten Polynoms, um den neuen Dividenden zu finden.
| - | + | ||||||||||
| + | - | - | + | ||||||||
| - | - | ||||||||||
| - | - | ||||||||||
| + | + | ||||||||||
| + | + | ||||||||||
| - | - | ||||||||||
Schritt 6.2.2.5.16
Da der Rest gleich ist, ist der Quotient das endgültige Ergebnis.
Schritt 6.2.2.6
Schreibe als eine Menge von Faktoren.
Schritt 6.2.3
Faktorisiere.
Schritt 6.2.3.1
Faktorisiere durch Gruppieren.
Schritt 6.2.3.1.1
Faktorisiere durch Gruppieren.
Schritt 6.2.3.1.1.1
Für ein Polynom der Form schreibe den mittleren Term als eine Summe zweier Terme um, deren Produkt gleich und deren Summe gleich ist.
Schritt 6.2.3.1.1.1.1
Faktorisiere aus heraus.
Schritt 6.2.3.1.1.1.2
Schreibe um als plus
Schritt 6.2.3.1.1.1.3
Wende das Distributivgesetz an.
Schritt 6.2.3.1.1.2
Klammere den größten gemeinsamen Teiler aus jeder Gruppe aus.
Schritt 6.2.3.1.1.2.1
Gruppiere die ersten beiden Terme und die letzten beiden Terme.
Schritt 6.2.3.1.1.2.2
Klammere den größten gemeinsamen Teiler (ggT) aus jeder Gruppe aus.
Schritt 6.2.3.1.1.3
Faktorisiere das Polynom durch Ausklammern des größten gemeinsamen Teilers, .
Schritt 6.2.3.1.2
Entferne unnötige Klammern.
Schritt 6.2.3.2
Entferne unnötige Klammern.
Schritt 6.3
Wenn irgendein einzelner Faktor auf der linken Seite der Gleichung gleich ist, dann ist der ganze Ausdruck gleich .
Schritt 6.4
Setze gleich .
Schritt 6.5
Setze gleich und löse nach auf.
Schritt 6.5.1
Setze gleich .
Schritt 6.5.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 6.6
Setze gleich und löse nach auf.
Schritt 6.6.1
Setze gleich .
Schritt 6.6.2
Löse nach auf.
Schritt 6.6.2.1
Addiere zu beiden Seiten der Gleichung.
Schritt 6.6.2.2
Teile jeden Ausdruck in durch und vereinfache.
Schritt 6.6.2.2.1
Teile jeden Ausdruck in durch .
Schritt 6.6.2.2.2
Vereinfache die linke Seite.
Schritt 6.6.2.2.2.1
Kürze den gemeinsamen Faktor von .
Schritt 6.6.2.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 6.6.2.2.2.1.2
Dividiere durch .
Schritt 6.7
Setze gleich und löse nach auf.
Schritt 6.7.1
Setze gleich .
Schritt 6.7.2
Addiere zu beiden Seiten der Gleichung.
Schritt 6.8
Die endgültige Lösung sind alle Werte, die wahr machen.
Schritt 7
Schritt 7.1
Der Definitionsbereich umfasst alle reellen Zahlen, ausgenommen jene, für die der Ausdruck nicht definiert ist. In diesem Fall gibt es keine reellen Zahlen, für die der Ausdruck nicht definiert ist.
Schritt 8
Kritische Punkte zum auswerten.
Schritt 9
Berechne die zweite Ableitung an der Stelle . Wenn die zweite Ableitung positiv ist, dann ist dies ein lokales Minimum. Wenn sie negativ ist, dann ist dies ein lokales Maximum.
Schritt 10
Schritt 10.1
Vereinfache jeden Term.
Schritt 10.1.1
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 10.1.2
Mutltipliziere mit .
Schritt 10.1.3
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 10.1.4
Mutltipliziere mit .
Schritt 10.1.5
Mutltipliziere mit .
Schritt 10.2
Vereinfache durch Addieren von Zahlen.
Schritt 10.2.1
Addiere und .
Schritt 10.2.2
Addiere und .
Schritt 10.2.3
Addiere und .
Schritt 11
ist ein lokales Minimum, weil der Wert der zweiten Ableitung positiv ist. Dies wird auch der Prüfung der zweiten Ableitung genannt.
ist ein lokales Minimum
Schritt 12
Schritt 12.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 12.2
Vereinfache das Ergebnis.
Schritt 12.2.1
Ermittle den gemeinsamen Nenner.
Schritt 12.2.1.1
Mutltipliziere mit .
Schritt 12.2.1.2
Mutltipliziere mit .
Schritt 12.2.1.3
Mutltipliziere mit .
Schritt 12.2.1.4
Mutltipliziere mit .
Schritt 12.2.1.5
Schreibe als einen Bruch mit dem Nenner .
Schritt 12.2.1.6
Mutltipliziere mit .
Schritt 12.2.1.7
Mutltipliziere mit .
Schritt 12.2.1.8
Schreibe als einen Bruch mit dem Nenner .
Schritt 12.2.1.9
Mutltipliziere mit .
Schritt 12.2.1.10
Mutltipliziere mit .
Schritt 12.2.1.11
Stelle die Faktoren von um.
Schritt 12.2.1.12
Mutltipliziere mit .
Schritt 12.2.1.13
Mutltipliziere mit .
Schritt 12.2.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 12.2.3
Vereinfache jeden Term.
Schritt 12.2.3.1
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 12.2.3.2
Multipliziere .
Schritt 12.2.3.2.1
Mutltipliziere mit .
Schritt 12.2.3.2.2
Mutltipliziere mit .
Schritt 12.2.3.3
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 12.2.3.4
Multipliziere .
Schritt 12.2.3.4.1
Mutltipliziere mit .
Schritt 12.2.3.4.2
Mutltipliziere mit .
Schritt 12.2.3.5
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 12.2.3.6
Multipliziere .
Schritt 12.2.3.6.1
Mutltipliziere mit .
Schritt 12.2.3.6.2
Mutltipliziere mit .
Schritt 12.2.3.7
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 12.2.3.8
Mutltipliziere mit .
Schritt 12.2.4
Vereinfache den Ausdruck.
Schritt 12.2.4.1
Addiere und .
Schritt 12.2.4.2
Addiere und .
Schritt 12.2.4.3
Addiere und .
Schritt 12.2.4.4
Dividiere durch .
Schritt 12.2.5
Die endgültige Lösung ist .
Schritt 13
Berechne die zweite Ableitung an der Stelle . Wenn die zweite Ableitung positiv ist, dann ist dies ein lokales Minimum. Wenn sie negativ ist, dann ist dies ein lokales Maximum.
Schritt 14
Schritt 14.1
Vereinfache jeden Term.
Schritt 14.1.1
Potenziere mit .
Schritt 14.1.2
Mutltipliziere mit .
Schritt 14.1.3
Potenziere mit .
Schritt 14.1.4
Mutltipliziere mit .
Schritt 14.1.5
Mutltipliziere mit .
Schritt 14.2
Vereinfache durch Addieren und Subtrahieren.
Schritt 14.2.1
Subtrahiere von .
Schritt 14.2.2
Addiere und .
Schritt 14.2.3
Addiere und .
Schritt 15
ist ein lokales Maximum, weil der Wert der zweiten Ableitung negativ ist. Dies wird auch Prüfung der zweiten Ableitung genannt.
ist ein lokales Maximum
Schritt 16
Schritt 16.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 16.2
Vereinfache das Ergebnis.
Schritt 16.2.1
Ermittle den gemeinsamen Nenner.
Schritt 16.2.1.1
Mutltipliziere mit .
Schritt 16.2.1.2
Mutltipliziere mit .
Schritt 16.2.1.3
Mutltipliziere mit .
Schritt 16.2.1.4
Mutltipliziere mit .
Schritt 16.2.1.5
Schreibe als einen Bruch mit dem Nenner .
Schritt 16.2.1.6
Mutltipliziere mit .
Schritt 16.2.1.7
Mutltipliziere mit .
Schritt 16.2.1.8
Schreibe als einen Bruch mit dem Nenner .
Schritt 16.2.1.9
Mutltipliziere mit .
Schritt 16.2.1.10
Mutltipliziere mit .
Schritt 16.2.1.11
Stelle die Faktoren von um.
Schritt 16.2.1.12
Mutltipliziere mit .
Schritt 16.2.1.13
Mutltipliziere mit .
Schritt 16.2.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 16.2.3
Vereinfache jeden Term.
Schritt 16.2.3.1
Potenziere mit .
Schritt 16.2.3.2
Multipliziere .
Schritt 16.2.3.2.1
Mutltipliziere mit .
Schritt 16.2.3.2.2
Mutltipliziere mit .
Schritt 16.2.3.3
Potenziere mit .
Schritt 16.2.3.4
Multipliziere .
Schritt 16.2.3.4.1
Mutltipliziere mit .
Schritt 16.2.3.4.2
Mutltipliziere mit .
Schritt 16.2.3.5
Multipliziere mit durch Addieren der Exponenten.
Schritt 16.2.3.5.1
Mutltipliziere mit .
Schritt 16.2.3.5.1.1
Potenziere mit .
Schritt 16.2.3.5.1.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 16.2.3.5.2
Addiere und .
Schritt 16.2.3.6
Potenziere mit .
Schritt 16.2.3.7
Mutltipliziere mit .
Schritt 16.2.3.8
Potenziere mit .
Schritt 16.2.3.9
Mutltipliziere mit .
Schritt 16.2.4
Vereinfache durch Addieren und Subtrahieren.
Schritt 16.2.4.1
Subtrahiere von .
Schritt 16.2.4.2
Addiere und .
Schritt 16.2.4.3
Addiere und .
Schritt 16.2.5
Die endgültige Lösung ist .
Schritt 17
Berechne die zweite Ableitung an der Stelle . Wenn die zweite Ableitung positiv ist, dann ist dies ein lokales Minimum. Wenn sie negativ ist, dann ist dies ein lokales Maximum.
Schritt 18
Schritt 18.1
Vereinfache jeden Term.
Schritt 18.1.1
Wende die Produktregel auf an.
Schritt 18.1.2
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 18.1.3
Potenziere mit .
Schritt 18.1.4
Kürze den gemeinsamen Faktor von .
Schritt 18.1.4.1
Kürze den gemeinsamen Faktor.
Schritt 18.1.4.2
Forme den Ausdruck um.
Schritt 18.1.5
Wende die Produktregel auf an.
Schritt 18.1.6
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 18.1.7
Potenziere mit .
Schritt 18.1.8
Kombiniere und .
Schritt 18.1.9
Ziehe das Minuszeichen vor den Bruch.
Schritt 18.1.10
Kürze den gemeinsamen Faktor von .
Schritt 18.1.10.1
Faktorisiere aus heraus.
Schritt 18.1.10.2
Kürze den gemeinsamen Faktor.
Schritt 18.1.10.3
Forme den Ausdruck um.
Schritt 18.2
Ermittle den gemeinsamen Nenner.
Schritt 18.2.1
Schreibe als einen Bruch mit dem Nenner .
Schritt 18.2.2
Mutltipliziere mit .
Schritt 18.2.3
Mutltipliziere mit .
Schritt 18.2.4
Schreibe als einen Bruch mit dem Nenner .
Schritt 18.2.5
Mutltipliziere mit .
Schritt 18.2.6
Mutltipliziere mit .
Schritt 18.2.7
Schreibe als einen Bruch mit dem Nenner .
Schritt 18.2.8
Mutltipliziere mit .
Schritt 18.2.9
Mutltipliziere mit .
Schritt 18.3
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 18.4
Vereinfache jeden Term.
Schritt 18.4.1
Mutltipliziere mit .
Schritt 18.4.2
Mutltipliziere mit .
Schritt 18.5
Vereinfache den Ausdruck.
Schritt 18.5.1
Subtrahiere von .
Schritt 18.5.2
Subtrahiere von .
Schritt 18.5.3
Addiere und .
Schritt 18.5.4
Ziehe das Minuszeichen vor den Bruch.
Schritt 19
ist ein lokales Maximum, weil der Wert der zweiten Ableitung negativ ist. Dies wird auch Prüfung der zweiten Ableitung genannt.
ist ein lokales Maximum
Schritt 20
Schritt 20.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 20.2
Vereinfache das Ergebnis.
Schritt 20.2.1
Ermittle den gemeinsamen Nenner.
Schritt 20.2.1.1
Mutltipliziere mit .
Schritt 20.2.1.2
Mutltipliziere mit .
Schritt 20.2.1.3
Mutltipliziere mit .
Schritt 20.2.1.4
Mutltipliziere mit .
Schritt 20.2.1.5
Schreibe als einen Bruch mit dem Nenner .
Schritt 20.2.1.6
Mutltipliziere mit .
Schritt 20.2.1.7
Mutltipliziere mit .
Schritt 20.2.1.8
Schreibe als einen Bruch mit dem Nenner .
Schritt 20.2.1.9
Mutltipliziere mit .
Schritt 20.2.1.10
Mutltipliziere mit .
Schritt 20.2.1.11
Stelle die Faktoren von um.
Schritt 20.2.1.12
Mutltipliziere mit .
Schritt 20.2.1.13
Mutltipliziere mit .
Schritt 20.2.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 20.2.3
Vereinfache jeden Term.
Schritt 20.2.3.1
Wende die Produktregel auf an.
Schritt 20.2.3.2
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 20.2.3.3
Potenziere mit .
Schritt 20.2.3.4
Kürze den gemeinsamen Faktor von .
Schritt 20.2.3.4.1
Faktorisiere aus heraus.
Schritt 20.2.3.4.2
Kürze den gemeinsamen Faktor.
Schritt 20.2.3.4.3
Forme den Ausdruck um.
Schritt 20.2.3.5
Kürze den gemeinsamen Faktor von .
Schritt 20.2.3.5.1
Faktorisiere aus heraus.
Schritt 20.2.3.5.2
Kürze den gemeinsamen Faktor.
Schritt 20.2.3.5.3
Forme den Ausdruck um.
Schritt 20.2.3.6
Wende die Produktregel auf an.
Schritt 20.2.3.7
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 20.2.3.8
Potenziere mit .
Schritt 20.2.3.9
Kombiniere und .
Schritt 20.2.3.10
Ziehe das Minuszeichen vor den Bruch.
Schritt 20.2.3.11
Multipliziere .
Schritt 20.2.3.11.1
Mutltipliziere mit .
Schritt 20.2.3.11.2
Kombiniere und .
Schritt 20.2.3.11.3
Mutltipliziere mit .
Schritt 20.2.3.12
Ziehe das Minuszeichen vor den Bruch.
Schritt 20.2.3.13
Wende die Produktregel auf an.
Schritt 20.2.3.14
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 20.2.3.15
Potenziere mit .
Schritt 20.2.3.16
Kürze den gemeinsamen Faktor von .
Schritt 20.2.3.16.1
Bringe das führende Minuszeichen in in den Zähler.
Schritt 20.2.3.16.2
Faktorisiere aus heraus.
Schritt 20.2.3.16.3
Faktorisiere aus heraus.
Schritt 20.2.3.16.4
Kürze den gemeinsamen Faktor.
Schritt 20.2.3.16.5
Forme den Ausdruck um.
Schritt 20.2.3.17
Kombiniere und .
Schritt 20.2.3.18
Mutltipliziere mit .
Schritt 20.2.3.19
Ziehe das Minuszeichen vor den Bruch.
Schritt 20.2.3.20
Wende die Produktregel auf an.
Schritt 20.2.3.21
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 20.2.3.22
Potenziere mit .
Schritt 20.2.3.23
Kürze den gemeinsamen Faktor von .
Schritt 20.2.3.23.1
Faktorisiere aus heraus.
Schritt 20.2.3.23.2
Kürze den gemeinsamen Faktor.
Schritt 20.2.3.23.3
Forme den Ausdruck um.
Schritt 20.2.4
Ermittle den gemeinsamen Nenner.
Schritt 20.2.4.1
Mutltipliziere mit .
Schritt 20.2.4.2
Mutltipliziere mit .
Schritt 20.2.4.3
Mutltipliziere mit .
Schritt 20.2.4.4
Mutltipliziere mit .
Schritt 20.2.4.5
Schreibe als einen Bruch mit dem Nenner .
Schritt 20.2.4.6
Mutltipliziere mit .
Schritt 20.2.4.7
Mutltipliziere mit .
Schritt 20.2.4.8
Mutltipliziere mit .
Schritt 20.2.4.9
Mutltipliziere mit .
Schritt 20.2.5
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 20.2.6
Vereinfache jeden Term.
Schritt 20.2.6.1
Mutltipliziere mit .
Schritt 20.2.6.2
Mutltipliziere mit .
Schritt 20.2.7
Vereinfache durch Addieren und Subtrahieren.
Schritt 20.2.7.1
Subtrahiere von .
Schritt 20.2.7.2
Subtrahiere von .
Schritt 20.2.7.3
Addiere und .
Schritt 20.2.8
Multipliziere den Zähler mit dem Kehrwert des Nenners.
Schritt 20.2.9
Multipliziere .
Schritt 20.2.9.1
Mutltipliziere mit .
Schritt 20.2.9.2
Mutltipliziere mit .
Schritt 20.2.10
Die endgültige Lösung ist .
Schritt 21
Berechne die zweite Ableitung an der Stelle . Wenn die zweite Ableitung positiv ist, dann ist dies ein lokales Minimum. Wenn sie negativ ist, dann ist dies ein lokales Maximum.
Schritt 22
Schritt 22.1
Vereinfache jeden Term.
Schritt 22.1.1
Potenziere mit .
Schritt 22.1.2
Mutltipliziere mit .
Schritt 22.1.3
Potenziere mit .
Schritt 22.1.4
Mutltipliziere mit .
Schritt 22.1.5
Mutltipliziere mit .
Schritt 22.2
Vereinfache durch Addieren und Subtrahieren.
Schritt 22.2.1
Subtrahiere von .
Schritt 22.2.2
Subtrahiere von .
Schritt 22.2.3
Addiere und .
Schritt 23
ist ein lokales Minimum, weil der Wert der zweiten Ableitung positiv ist. Dies wird auch der Prüfung der zweiten Ableitung genannt.
ist ein lokales Minimum
Schritt 24
Schritt 24.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 24.2
Vereinfache das Ergebnis.
Schritt 24.2.1
Ermittle den gemeinsamen Nenner.
Schritt 24.2.1.1
Mutltipliziere mit .
Schritt 24.2.1.2
Mutltipliziere mit .
Schritt 24.2.1.3
Mutltipliziere mit .
Schritt 24.2.1.4
Mutltipliziere mit .
Schritt 24.2.1.5
Schreibe als einen Bruch mit dem Nenner .
Schritt 24.2.1.6
Mutltipliziere mit .
Schritt 24.2.1.7
Mutltipliziere mit .
Schritt 24.2.1.8
Schreibe als einen Bruch mit dem Nenner .
Schritt 24.2.1.9
Mutltipliziere mit .
Schritt 24.2.1.10
Mutltipliziere mit .
Schritt 24.2.1.11
Stelle die Faktoren von um.
Schritt 24.2.1.12
Mutltipliziere mit .
Schritt 24.2.1.13
Mutltipliziere mit .
Schritt 24.2.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 24.2.3
Vereinfache jeden Term.
Schritt 24.2.3.1
Multipliziere mit durch Addieren der Exponenten.
Schritt 24.2.3.1.1
Mutltipliziere mit .
Schritt 24.2.3.1.1.1
Potenziere mit .
Schritt 24.2.3.1.1.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 24.2.3.1.2
Addiere und .
Schritt 24.2.3.2
Potenziere mit .
Schritt 24.2.3.3
Mutltipliziere mit .
Schritt 24.2.3.4
Potenziere mit .
Schritt 24.2.3.5
Multipliziere .
Schritt 24.2.3.5.1
Mutltipliziere mit .
Schritt 24.2.3.5.2
Mutltipliziere mit .
Schritt 24.2.3.6
Potenziere mit .
Schritt 24.2.3.7
Multipliziere .
Schritt 24.2.3.7.1
Mutltipliziere mit .
Schritt 24.2.3.7.2
Mutltipliziere mit .
Schritt 24.2.3.8
Potenziere mit .
Schritt 24.2.3.9
Mutltipliziere mit .
Schritt 24.2.4
Vereinfache den Ausdruck durch Kürzen der gemeinsamen Faktoren.
Schritt 24.2.4.1
Subtrahiere von .
Schritt 24.2.4.2
Vereinfache durch Addieren und Subtrahieren.
Schritt 24.2.4.2.1
Subtrahiere von .
Schritt 24.2.4.2.2
Addiere und .
Schritt 24.2.4.3
Kürze den gemeinsamen Teiler von und .
Schritt 24.2.4.3.1
Faktorisiere aus heraus.
Schritt 24.2.4.3.2
Kürze die gemeinsamen Faktoren.
Schritt 24.2.4.3.2.1
Faktorisiere aus heraus.
Schritt 24.2.4.3.2.2
Kürze den gemeinsamen Faktor.
Schritt 24.2.4.3.2.3
Forme den Ausdruck um.
Schritt 24.2.4.4
Ziehe das Minuszeichen vor den Bruch.
Schritt 24.2.5
Die endgültige Lösung ist .
Schritt 25
Dies sind die lokalen Extrema für .
ist ein lokales Minimum
ist ein lokales Maximum
ist ein lokales Maximum
ist ein lokales Minimum
Schritt 26