Analysis Beispiele

Finde die lokalen Maxima und Minima y=2(1/(sin(x)))
Schritt 1
Schreibe als Funktion.
Schritt 2
Ermittle die erste Ableitung der Funktion.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Wandle von nach um.
Schritt 2.2
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.3
Die Ableitung von nach ist .
Schritt 2.4
Vereinfache den Ausdruck.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.1
Mutltipliziere mit .
Schritt 2.4.2
Stelle die Faktoren von um.
Schritt 3
Ermittle die zweite Ableitung der Funktion.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.2
Differenziere unter Anwendung der Produktregel, die besagt, dass gleich ist mit und .
Schritt 3.3
Die Ableitung von nach ist .
Schritt 3.4
Potenziere mit .
Schritt 3.5
Potenziere mit .
Schritt 3.6
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 3.7
Addiere und .
Schritt 3.8
Die Ableitung von nach ist .
Schritt 3.9
Potenziere mit .
Schritt 3.10
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 3.11
Addiere und .
Schritt 3.12
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.12.1
Wende das Distributivgesetz an.
Schritt 3.12.2
Vereine die Terme
Tippen, um mehr Schritte zu sehen ...
Schritt 3.12.2.1
Mutltipliziere mit .
Schritt 3.12.2.2
Mutltipliziere mit .
Schritt 3.12.3
Stelle die Terme um.
Schritt 4
Um die lokalen Maximum- und Minimumwerte einer Funktion zu ermitteln, setze die Ableitung gleich und löse die Gleichung.
Schritt 5
Wenn irgendein einzelner Faktor auf der linken Seite der Gleichung gleich ist, dann ist der ganze Ausdruck gleich .
Schritt 6
Setze gleich und löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Setze gleich .
Schritt 6.2
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.1
Wende den inversen Kotangens auf beide Seiten der Gleichung an, um aus dem Kotangens herauszuziehen.
Schritt 6.2.2
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.2.1
Der genau Wert von ist .
Schritt 6.2.3
Die Kotangens-Funktion ist im ersten und dritten Quadranten positiv. Um die zweite Lösung zu ermitteln, addiere den Referenzwinkel aus , um die Lösung im vierten Quadranten zu bestimmen.
Schritt 6.2.4
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.4.1
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 6.2.4.2
Kombiniere Brüche.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.4.2.1
Kombiniere und .
Schritt 6.2.4.2.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 6.2.4.3
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.4.3.1
Bringe auf die linke Seite von .
Schritt 6.2.4.3.2
Addiere und .
Schritt 6.2.5
Die Lösung der Gleichung .
Schritt 7
Setze gleich und löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1
Setze gleich .
Schritt 7.2
Der Wertebereich des Kosekans ist und . Da nicht in diesen Bereich fällt, gibt es keine Lösung.
Keine Lösung
Keine Lösung
Schritt 8
Die endgültige Lösung sind alle Werte, die wahr machen.
Schritt 9
Berechne die zweite Ableitung an der Stelle . Wenn die zweite Ableitung positiv ist, dann ist dies ein lokales Minimum. Wenn sie negativ ist, dann ist dies ein lokales Maximum.
Schritt 10
Berechne die zweite Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 10.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 10.1.1
Der genau Wert von ist .
Schritt 10.1.2
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 10.1.3
Mutltipliziere mit .
Schritt 10.1.4
Der genau Wert von ist .
Schritt 10.1.5
Mutltipliziere mit .
Schritt 10.1.6
Der genau Wert von ist .
Schritt 10.1.7
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 10.1.8
Mutltipliziere mit .
Schritt 10.2
Addiere und .
Schritt 11
ist ein lokales Minimum, weil der Wert der zweiten Ableitung positiv ist. Dies wird auch der Prüfung der zweiten Ableitung genannt.
ist ein lokales Minimum
Schritt 12
Ermittele den y-Wert, wenn .
Tippen, um mehr Schritte zu sehen ...
Schritt 12.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 12.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 12.2.1
Der genau Wert von ist .
Schritt 12.2.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 12.2.2.1
Kürze den gemeinsamen Faktor.
Schritt 12.2.2.2
Forme den Ausdruck um.
Schritt 12.2.3
Mutltipliziere mit .
Schritt 12.2.4
Die endgültige Lösung ist .
Schritt 13
Berechne die zweite Ableitung an der Stelle . Wenn die zweite Ableitung positiv ist, dann ist dies ein lokales Minimum. Wenn sie negativ ist, dann ist dies ein lokales Maximum.
Schritt 14
Berechne die zweite Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 14.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 14.1.1
Wende den Referenzwinkel an, indem du den Winkel mit den entsprechenden trigonometrischen Werten im ersten Quadranten findest. Kehre das Vorzeichen des Ausdrucks um, da der Kotangens im vierten Quadranten negativ ist.
Schritt 14.1.2
Der genau Wert von ist .
Schritt 14.1.3
Mutltipliziere mit .
Schritt 14.1.4
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 14.1.5
Mutltipliziere mit .
Schritt 14.1.6
Wende den Referenzwinkel an, indem du den Winkel mit den entsprechenden trigonometrischen Werten im ersten Quadranten findest. Kehre das Vorzeichen des Ausdrucks um, da der Kosekans im vierten Quadranten negativ ist.
Schritt 14.1.7
Der genau Wert von ist .
Schritt 14.1.8
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 14.1.8.1
Mutltipliziere mit .
Schritt 14.1.8.2
Mutltipliziere mit .
Schritt 14.1.9
Wende den Referenzwinkel an, indem du den Winkel mit den entsprechenden trigonometrischen Werten im ersten Quadranten findest. Kehre das Vorzeichen des Ausdrucks um, da der Kosekans im vierten Quadranten negativ ist.
Schritt 14.1.10
Der genau Wert von ist .
Schritt 14.1.11
Mutltipliziere mit .
Schritt 14.1.12
Potenziere mit .
Schritt 14.1.13
Mutltipliziere mit .
Schritt 14.2
Subtrahiere von .
Schritt 15
ist ein lokales Maximum, weil der Wert der zweiten Ableitung negativ ist. Dies wird auch Prüfung der zweiten Ableitung genannt.
ist ein lokales Maximum
Schritt 16
Ermittele den y-Wert, wenn .
Tippen, um mehr Schritte zu sehen ...
Schritt 16.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 16.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 16.2.1
Vereinfache den Nenner.
Tippen, um mehr Schritte zu sehen ...
Schritt 16.2.1.1
Wende den Referenzwinkel an, indem du den Winkel mit den entsprechenden trigonometrischen Werten im ersten Quadranten findest. Kehre das Vorzeichen des Ausdrucks um, da der Sinus im vierten Quadranten negativ ist.
Schritt 16.2.1.2
Der genau Wert von ist .
Schritt 16.2.1.3
Mutltipliziere mit .
Schritt 16.2.2
Vereinfache den Ausdruck.
Tippen, um mehr Schritte zu sehen ...
Schritt 16.2.2.1
Dividiere durch .
Schritt 16.2.2.2
Mutltipliziere mit .
Schritt 16.2.3
Die endgültige Lösung ist .
Schritt 17
Dies sind die lokalen Extrema für .
ist ein lokales Minimum
ist ein lokales Maximum
Schritt 18