Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schreibe als Funktion.
Schritt 2
Schritt 2.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.2
Berechne .
Schritt 2.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.2.3
Mutltipliziere mit .
Schritt 2.3
Differenziere unter Anwendung der Exponentialregel, die besagt, dass gleich ist, wobei =.
Schritt 3
Schritt 3.1
Differenziere.
Schritt 3.1.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 3.1.2
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 3.2
Differenziere unter Anwendung der Exponentialregel, die besagt, dass gleich ist, wobei =.
Schritt 3.3
Addiere und .
Schritt 4
Um die lokalen Maximum- und Minimumwerte einer Funktion zu ermitteln, setze die Ableitung gleich und löse die Gleichung.
Schritt 5
Schritt 5.1
Bestimme die erste Ableitung.
Schritt 5.1.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 5.1.2
Berechne .
Schritt 5.1.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 5.1.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 5.1.2.3
Mutltipliziere mit .
Schritt 5.1.3
Differenziere unter Anwendung der Exponentialregel, die besagt, dass gleich ist, wobei =.
Schritt 5.2
Die erste Ableitung von nach ist .
Schritt 6
Schritt 6.1
Setze die erste Ableitung gleich .
Schritt 6.2
Addiere zu beiden Seiten der Gleichung.
Schritt 6.3
Berechne von beiden Seiten der Gleichung den natürlichen Logarithmus, um die Variable vom Exponenten zu entfernen.
Schritt 6.4
Multipliziere die linke Seite aus.
Schritt 6.4.1
Zerlege durch Herausziehen von aus dem Logarithmus.
Schritt 6.4.2
Der natürliche Logarithmus von ist .
Schritt 6.4.3
Mutltipliziere mit .
Schritt 7
Schritt 7.1
Der Definitionsbereich umfasst alle reellen Zahlen, ausgenommen jene, für die der Ausdruck nicht definiert ist. In diesem Fall gibt es keine reellen Zahlen, für die der Ausdruck nicht definiert ist.
Schritt 8
Kritische Punkte zum auswerten.
Schritt 9
Berechne die zweite Ableitung an der Stelle . Wenn die zweite Ableitung positiv ist, dann ist dies ein lokales Minimum. Wenn sie negativ ist, dann ist dies ein lokales Maximum.
Schritt 10
Exponentialfunktion und Logarithmusfunktion sind zueinander inverse Funktionen.
Schritt 11
ist ein lokales Minimum, weil der Wert der zweiten Ableitung positiv ist. Dies wird auch der Prüfung der zweiten Ableitung genannt.
ist ein lokales Minimum
Schritt 12
Schritt 12.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 12.2
Vereinfache das Ergebnis.
Schritt 12.2.1
Vereinfache jeden Term.
Schritt 12.2.1.1
Vereinfache , indem du in den Logarithmus ziehst.
Schritt 12.2.1.2
Potenziere mit .
Schritt 12.2.1.3
Exponentialfunktion und Logarithmusfunktion sind zueinander inverse Funktionen.
Schritt 12.2.2
Die endgültige Lösung ist .
Schritt 13
Dies sind die lokalen Extrema für .
ist ein lokales Minimum
Schritt 14