Analysis Beispiele

Bestimme den Definitions- und Wertebereich f(x)=(6x+9)/(x^4+6x^3+9x^2)
Schritt 1
Setze den Nenner in gleich , um zu ermitteln, wo der Ausdruck nicht definiert ist.
Schritt 2
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Faktorisiere die linke Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.1
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.1.1
Faktorisiere aus heraus.
Schritt 2.1.1.2
Faktorisiere aus heraus.
Schritt 2.1.1.3
Faktorisiere aus heraus.
Schritt 2.1.1.4
Faktorisiere aus heraus.
Schritt 2.1.1.5
Faktorisiere aus heraus.
Schritt 2.1.2
Faktorisiere unter Verwendung der binomischen Formeln.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.2.1
Schreibe als um.
Schritt 2.1.2.2
Überprüfe, ob der mittlere Term das Zweifache des Produkts der Zahlen ist, die im ersten Term und im dritten Term quadriert werden.
Schritt 2.1.2.3
Schreibe das Polynom neu.
Schritt 2.1.2.4
Faktorisiere mithilfe der trinomischen Formel für das perfekte Quadrat , wobei und .
Schritt 2.2
Wenn irgendein einzelner Faktor auf der linken Seite der Gleichung gleich ist, dann ist der ganze Ausdruck gleich .
Schritt 2.3
Setze gleich und löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1
Setze gleich .
Schritt 2.3.2
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.2.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Schritt 2.3.2.2
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.2.2.1
Schreibe als um.
Schritt 2.3.2.2.2
Ziehe Terme aus der Wurzel heraus unter der Annahme positiver reeller Zahlen.
Schritt 2.3.2.2.3
Plus oder Minus ist .
Schritt 2.4
Setze gleich und löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.1
Setze gleich .
Schritt 2.4.2
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.2.1
Setze gleich .
Schritt 2.4.2.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 2.5
Die endgültige Lösung sind alle Werte, die wahr machen.
Schritt 3
Der Definitionsbereich umfasst alle Werte von , für die der Ausdruck definiert ist.
Intervallschreibweise:
Aufzählende bzw. beschreibende Mengenschreibweise:
Schritt 4
Der Wertebereich ist die Menge aller gültigen -Werte. Ermittle den Wertebereich mithilfe des Graphen.
Intervallschreibweise:
Aufzählende bzw. beschreibende Mengenschreibweise:
Schritt 5
Bestimme den Definitionsbereich und den Wertebereich.
Definitionsbereich:
Wertebereich:
Schritt 6