Analysis Beispiele

Ermittle die Umkehrfunktion f(x)=1/2*( natürlicher Logarithmus von 2x-1)
Schritt 1
Schreibe als Gleichung.
Schritt 2
Vertausche die Variablen.
Schritt 3
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Schreibe die Gleichung als um.
Schritt 3.2
Multipliziere beide Seiten der Gleichung mit .
Schritt 3.3
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.1.1
Kombiniere und .
Schritt 3.3.1.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.1.2.1
Kürze den gemeinsamen Faktor.
Schritt 3.3.1.2.2
Forme den Ausdruck um.
Schritt 3.4
Um nach aufzulösen, schreibe die Gleichung mithilfe der Logarithmengesetze um.
Schritt 3.5
Schreibe in eine Exponentialform indem du die Definition des Logarithmus verwendest. Wenn und positive reelle Zahlen sind und ist, dann ist gleich .
Schritt 3.6
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.6.1
Schreibe die Gleichung als um.
Schritt 3.6.2
Addiere zu beiden Seiten der Gleichung.
Schritt 3.6.3
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.6.3.1
Teile jeden Ausdruck in durch .
Schritt 3.6.3.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.6.3.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.6.3.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 3.6.3.2.1.2
Dividiere durch .
Schritt 4
Ersetze durch , um die endgültige Lösung anzuzeigen.
Schritt 5
Überprüfe, ob die Umkehrfunktion von ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Um die inverse Funktion (Umkehrfunktion) zu prüfen, prüfe ob ist und ist.
Schritt 5.2
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.1
Bilde die verkettete Ergebnisfunktion.
Schritt 5.2.2
Berechne durch Einsetzen des Wertes von in .
Schritt 5.2.3
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 5.2.4
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.4.1
Vereinfache , indem du in den Logarithmus ziehst.
Schritt 5.2.4.2
Vereinfache , indem du in den Logarithmus ziehst.
Schritt 5.2.4.3
Exponentialfunktion und Logarithmusfunktion sind zueinander inverse Funktionen.
Schritt 5.2.4.4
Multipliziere die Exponenten in .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.4.4.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 5.2.4.4.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.4.4.2.1
Kürze den gemeinsamen Faktor.
Schritt 5.2.4.4.2.2
Forme den Ausdruck um.
Schritt 5.2.4.5
Vereinfache.
Schritt 5.2.5
Vereinfache Terme.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.5.1
Vereine die Terme mit entgegengesetztem Vorzeichen in .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.5.1.1
Addiere und .
Schritt 5.2.5.1.2
Addiere und .
Schritt 5.2.5.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.5.2.1
Kürze den gemeinsamen Faktor.
Schritt 5.2.5.2.2
Dividiere durch .
Schritt 5.3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.1
Bilde die verkettete Ergebnisfunktion.
Schritt 5.3.2
Berechne durch Einsetzen des Wertes von in .
Schritt 5.3.3
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.3.1
Wende das Distributivgesetz an.
Schritt 5.3.3.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.3.2.1
Kürze den gemeinsamen Faktor.
Schritt 5.3.3.2.2
Forme den Ausdruck um.
Schritt 5.3.3.3
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.3.3.1
Kürze den gemeinsamen Faktor.
Schritt 5.3.3.3.2
Forme den Ausdruck um.
Schritt 5.3.4
Vereine die Terme mit entgegengesetztem Vorzeichen in .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.4.1
Subtrahiere von .
Schritt 5.3.4.2
Addiere und .
Schritt 5.3.5
Benutze die Rechenregeln für Logarithmen, um aus dem Exponenten zu ziehen.
Schritt 5.3.6
Der natürliche Logarithmus von ist .
Schritt 5.3.7
Mutltipliziere mit .
Schritt 5.3.8
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.8.1
Faktorisiere aus heraus.
Schritt 5.3.8.2
Kürze den gemeinsamen Faktor.
Schritt 5.3.8.3
Forme den Ausdruck um.
Schritt 5.4
Da und gleich sind, ist die inverse Funktion (Umkehrfunktion) von .