Analysis Beispiele

Bestimme den Durchschnittswert der Funktion f(x)=1/x , [4,6]
,
Schritt 1
Um den Durchschnittswert einer Funktion zu finden, sollte die Funktion über das geschlossene Intervall stetig sein. Um herauszufinden, ob stetig auf ist oder nicht, finde den Definitionsbereich von .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Setze den Nenner in gleich , um zu ermitteln, wo der Ausdruck nicht definiert ist.
Schritt 1.2
Der Definitionsbereich umfasst alle Werte von , für die der Ausdruck definiert ist.
Intervallschreibweise:
Aufzählende bzw. beschreibende Mengenschreibweise:
Intervallschreibweise:
Aufzählende bzw. beschreibende Mengenschreibweise:
Schritt 2
ist stetig im Intervall .
ist stetig
Schritt 3
Der Durchschnittswert der Funktion im Intervall ist definiert als .
Schritt 4
Setze die tatsächlichen Werte in die Formel für den Durchschnittswert einer Funktion ein.
Schritt 5
Das Integral von nach ist .
Schritt 6
Vereinfache die Lösung.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Berechne bei und .
Schritt 6.2
Nutze die Quotienteneigenschaft von Logarithmen, .
Schritt 6.3
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.3.1
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 6.3.2
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 6.3.3
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.3.3.1
Faktorisiere aus heraus.
Schritt 6.3.3.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.3.3.2.1
Faktorisiere aus heraus.
Schritt 6.3.3.2.2
Kürze den gemeinsamen Faktor.
Schritt 6.3.3.2.3
Forme den Ausdruck um.
Schritt 7
Subtrahiere von .
Schritt 8
Vereinfache , indem du in den Logarithmus ziehst.
Schritt 9
Wende die Produktregel auf an.
Schritt 10