Analysis Beispiele

Finde die lokalen Maxima und Minima f(x)=12x^2-2x^3+3y^2+6xy
Schritt 1
Ermittle die erste Ableitung der Funktion.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.2
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.2.3
Mutltipliziere mit .
Schritt 1.3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.3.3
Mutltipliziere mit .
Schritt 1.4
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.5
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.5.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.5.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.5.3
Mutltipliziere mit .
Schritt 1.6
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.6.1
Addiere und .
Schritt 1.6.2
Stelle die Terme um.
Schritt 2
Ermittle die zweite Ableitung der Funktion.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.2
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.2.3
Mutltipliziere mit .
Schritt 2.3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.3.3
Mutltipliziere mit .
Schritt 2.4
Differenziere unter Anwendung der Konstantenregel.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.1
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 2.4.2
Addiere und .
Schritt 3
Um die lokalen Maximum- und Minimumwerte einer Funktion zu ermitteln, setze die Ableitung gleich und löse die Gleichung.
Schritt 4
Bestimme die erste Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Bestimme die erste Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 4.1.2
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 4.1.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 4.1.2.3
Mutltipliziere mit .
Schritt 4.1.3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 4.1.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 4.1.3.3
Mutltipliziere mit .
Schritt 4.1.4
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 4.1.5
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.5.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 4.1.5.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 4.1.5.3
Mutltipliziere mit .
Schritt 4.1.6
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.6.1
Addiere und .
Schritt 4.1.6.2
Stelle die Terme um.
Schritt 4.2
Die erste Ableitung von nach ist .
Schritt 5
Setze die erste Ableitung gleich , dann löse die Gleichung .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Setze die erste Ableitung gleich .
Schritt 5.2
Verwende die Quadratformel, um die Lösungen zu finden.
Schritt 5.3
Setze die Werte , und in die Quadratformel ein und löse nach auf.
Schritt 5.4
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.4.1
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.4.1.1
Potenziere mit .
Schritt 5.4.1.2
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.4.1.2.1
Mutltipliziere mit .
Schritt 5.4.1.2.2
Mutltipliziere mit .
Schritt 5.4.1.3
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.4.1.3.1
Faktorisiere aus heraus.
Schritt 5.4.1.3.2
Faktorisiere aus heraus.
Schritt 5.4.1.4
Schreibe als um.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.4.1.4.1
Schreibe als um.
Schritt 5.4.1.4.2
Schreibe als um.
Schritt 5.4.1.5
Ziehe Terme aus der Wurzel heraus.
Schritt 5.4.1.6
Potenziere mit .
Schritt 5.4.2
Mutltipliziere mit .
Schritt 5.4.3
Vereinfache .
Schritt 5.5
Vereinfache den Ausdruck, um nach dem -Teil von aufzulösen.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.5.1
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.5.1.1
Potenziere mit .
Schritt 5.5.1.2
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.5.1.2.1
Mutltipliziere mit .
Schritt 5.5.1.2.2
Mutltipliziere mit .
Schritt 5.5.1.3
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.5.1.3.1
Faktorisiere aus heraus.
Schritt 5.5.1.3.2
Faktorisiere aus heraus.
Schritt 5.5.1.4
Schreibe als um.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.5.1.4.1
Schreibe als um.
Schritt 5.5.1.4.2
Schreibe als um.
Schritt 5.5.1.5
Ziehe Terme aus der Wurzel heraus.
Schritt 5.5.1.6
Potenziere mit .
Schritt 5.5.2
Mutltipliziere mit .
Schritt 5.5.3
Vereinfache .
Schritt 5.5.4
Ändere das zu .
Schritt 5.6
Vereinfache den Ausdruck, um nach dem -Teil von aufzulösen.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.6.1
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.6.1.1
Potenziere mit .
Schritt 5.6.1.2
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.6.1.2.1
Mutltipliziere mit .
Schritt 5.6.1.2.2
Mutltipliziere mit .
Schritt 5.6.1.3
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.6.1.3.1
Faktorisiere aus heraus.
Schritt 5.6.1.3.2
Faktorisiere aus heraus.
Schritt 5.6.1.4
Schreibe als um.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.6.1.4.1
Schreibe als um.
Schritt 5.6.1.4.2
Schreibe als um.
Schritt 5.6.1.5
Ziehe Terme aus der Wurzel heraus.
Schritt 5.6.1.6
Potenziere mit .
Schritt 5.6.2
Mutltipliziere mit .
Schritt 5.6.3
Vereinfache .
Schritt 5.6.4
Ändere das zu .
Schritt 5.7
Die endgültige Lösung ist die Kombination beider Lösungen.
Schritt 6
Ermittle die Werte, wo die Ableitung nicht definiert ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Der Definitionsbereich umfasst alle reellen Zahlen, ausgenommen jene, für die der Ausdruck nicht definiert ist. In diesem Fall gibt es keine reellen Zahlen, für die der Ausdruck nicht definiert ist.
Schritt 7
Kritische Punkte zum auswerten.
Schritt 8
Berechne die zweite Ableitung an der Stelle . Wenn die zweite Ableitung positiv ist, dann ist dies ein lokales Minimum. Wenn sie negativ ist, dann ist dies ein lokales Maximum.
Schritt 9
Berechne die zweite Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 9.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 9.1.1
Wende das Distributivgesetz an.
Schritt 9.1.2
Mutltipliziere mit .
Schritt 9.2
Vereine die Terme mit entgegengesetztem Vorzeichen in .
Tippen, um mehr Schritte zu sehen ...
Schritt 9.2.1
Addiere und .
Schritt 9.2.2
Subtrahiere von .
Schritt 10
Da der erste Ableitungstest nicht erfolgreich war, gibt es kein lokales Extremum.
Keine lokalen Extrema
Schritt 11