Analysis Beispiele

Finde die lokalen Maxima und Minima f(x)=12e^x-e^(2x)
Schritt 1
Ermittle die erste Ableitung der Funktion.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.2
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.2.2
Differenziere unter Anwendung der Exponentialregel, die besagt, dass gleich ist, wobei =.
Schritt 1.3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.3.2
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.2.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 1.3.2.2
Differenziere unter Anwendung der Exponentialregel, die besagt, dass gleich ist, wobei =.
Schritt 1.3.2.3
Ersetze alle durch .
Schritt 1.3.3
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.3.4
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.3.5
Mutltipliziere mit .
Schritt 1.3.6
Bringe auf die linke Seite von .
Schritt 1.3.7
Mutltipliziere mit .
Schritt 2
Ermittle die zweite Ableitung der Funktion.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.2
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.2.2
Differenziere unter Anwendung der Exponentialregel, die besagt, dass gleich ist, wobei =.
Schritt 2.3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.3.2
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.2.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 2.3.2.2
Differenziere unter Anwendung der Exponentialregel, die besagt, dass gleich ist, wobei =.
Schritt 2.3.2.3
Ersetze alle durch .
Schritt 2.3.3
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.3.4
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.3.5
Mutltipliziere mit .
Schritt 2.3.6
Bringe auf die linke Seite von .
Schritt 2.3.7
Mutltipliziere mit .
Schritt 3
Um die lokalen Maximum- und Minimumwerte einer Funktion zu ermitteln, setze die Ableitung gleich und löse die Gleichung.
Schritt 4
Bestimme die erste Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Bestimme die erste Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 4.1.2
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 4.1.2.2
Differenziere unter Anwendung der Exponentialregel, die besagt, dass gleich ist, wobei =.
Schritt 4.1.3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 4.1.3.2
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.3.2.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 4.1.3.2.2
Differenziere unter Anwendung der Exponentialregel, die besagt, dass gleich ist, wobei =.
Schritt 4.1.3.2.3
Ersetze alle durch .
Schritt 4.1.3.3
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 4.1.3.4
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 4.1.3.5
Mutltipliziere mit .
Schritt 4.1.3.6
Bringe auf die linke Seite von .
Schritt 4.1.3.7
Mutltipliziere mit .
Schritt 4.2
Die erste Ableitung von nach ist .
Schritt 5
Setze die erste Ableitung gleich , dann löse die Gleichung .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Setze die erste Ableitung gleich .
Schritt 5.2
Faktorisiere die linke Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.1
Schreibe als um.
Schritt 5.2.2
Es sei . Ersetze für alle .
Schritt 5.2.3
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.3.1
Faktorisiere aus heraus.
Schritt 5.2.3.2
Faktorisiere aus heraus.
Schritt 5.2.3.3
Faktorisiere aus heraus.
Schritt 5.2.4
Ersetze alle durch .
Schritt 5.3
Wenn irgendein einzelner Faktor auf der linken Seite der Gleichung gleich ist, dann ist der ganze Ausdruck gleich .
Schritt 5.4
Setze gleich und löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.4.1
Setze gleich .
Schritt 5.4.2
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.4.2.1
Berechne von beiden Seiten der Gleichung den natürlichen Logarithmus, um die Variable vom Exponenten zu entfernen.
Schritt 5.4.2.2
Die Gleichung kann nicht gelöst werden, da nicht definiert ist.
Undefiniert
Schritt 5.4.2.3
Es gibt keine Lösung für
Keine Lösung
Keine Lösung
Keine Lösung
Schritt 5.5
Setze gleich und löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.5.1
Setze gleich .
Schritt 5.5.2
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.5.2.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 5.5.2.2
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.5.2.2.1
Teile jeden Ausdruck in durch .
Schritt 5.5.2.2.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.5.2.2.2.1
Dividieren zweier negativer Zahlen ergibt eine positive Zahl.
Schritt 5.5.2.2.2.2
Dividiere durch .
Schritt 5.5.2.2.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.5.2.2.3.1
Dividiere durch .
Schritt 5.5.2.3
Berechne von beiden Seiten der Gleichung den natürlichen Logarithmus, um die Variable vom Exponenten zu entfernen.
Schritt 5.5.2.4
Multipliziere die linke Seite aus.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.5.2.4.1
Zerlege durch Herausziehen von aus dem Logarithmus.
Schritt 5.5.2.4.2
Der natürliche Logarithmus von ist .
Schritt 5.5.2.4.3
Mutltipliziere mit .
Schritt 5.6
Die endgültige Lösung sind alle Werte, die wahr machen.
Schritt 6
Ermittle die Werte, wo die Ableitung nicht definiert ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Der Definitionsbereich umfasst alle reellen Zahlen, ausgenommen jene, für die der Ausdruck nicht definiert ist. In diesem Fall gibt es keine reellen Zahlen, für die der Ausdruck nicht definiert ist.
Schritt 7
Kritische Punkte zum auswerten.
Schritt 8
Berechne die zweite Ableitung an der Stelle . Wenn die zweite Ableitung positiv ist, dann ist dies ein lokales Minimum. Wenn sie negativ ist, dann ist dies ein lokales Maximum.
Schritt 9
Berechne die zweite Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 9.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 9.1.1
Exponentialfunktion und Logarithmusfunktion sind zueinander inverse Funktionen.
Schritt 9.1.2
Mutltipliziere mit .
Schritt 9.1.3
Vereinfache , indem du in den Logarithmus ziehst.
Schritt 9.1.4
Exponentialfunktion und Logarithmusfunktion sind zueinander inverse Funktionen.
Schritt 9.1.5
Potenziere mit .
Schritt 9.1.6
Mutltipliziere mit .
Schritt 9.2
Subtrahiere von .
Schritt 10
ist ein lokales Maximum, weil der Wert der zweiten Ableitung negativ ist. Dies wird auch Prüfung der zweiten Ableitung genannt.
ist ein lokales Maximum
Schritt 11
Ermittele den y-Wert, wenn .
Tippen, um mehr Schritte zu sehen ...
Schritt 11.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 11.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 11.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 11.2.1.1
Exponentialfunktion und Logarithmusfunktion sind zueinander inverse Funktionen.
Schritt 11.2.1.2
Mutltipliziere mit .
Schritt 11.2.1.3
Vereinfache , indem du in den Logarithmus ziehst.
Schritt 11.2.1.4
Exponentialfunktion und Logarithmusfunktion sind zueinander inverse Funktionen.
Schritt 11.2.1.5
Potenziere mit .
Schritt 11.2.1.6
Mutltipliziere mit .
Schritt 11.2.2
Subtrahiere von .
Schritt 11.2.3
Die endgültige Lösung ist .
Schritt 12
Dies sind die lokalen Extrema für .
ist ein lokales Maximum
Schritt 13