Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.2
Berechne .
Schritt 1.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.2.3
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 1.2.4
Kombiniere und .
Schritt 1.2.5
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 1.2.6
Vereinfache den Zähler.
Schritt 1.2.6.1
Mutltipliziere mit .
Schritt 1.2.6.2
Subtrahiere von .
Schritt 1.2.7
Ziehe das Minuszeichen vor den Bruch.
Schritt 1.2.8
Kombiniere und .
Schritt 1.2.9
Kombiniere und .
Schritt 1.2.10
Mutltipliziere mit .
Schritt 1.2.11
Bringe in den Nenner mit Hilfe der Regel des negativen Exponenten .
Schritt 1.2.12
Faktorisiere aus heraus.
Schritt 1.2.13
Kürze die gemeinsamen Faktoren.
Schritt 1.2.13.1
Faktorisiere aus heraus.
Schritt 1.2.13.2
Kürze den gemeinsamen Faktor.
Schritt 1.2.13.3
Forme den Ausdruck um.
Schritt 1.3
Berechne .
Schritt 1.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.3.3
Mutltipliziere mit .
Schritt 1.4
Stelle die Terme um.
Schritt 2
Schritt 2.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.2
Berechne .
Schritt 2.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.2.3
Mutltipliziere mit .
Schritt 2.3
Berechne .
Schritt 2.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.3.2
Schreibe als um.
Schritt 2.3.3
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 2.3.3.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 2.3.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.3.3.3
Ersetze alle durch .
Schritt 2.3.4
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.3.5
Multipliziere die Exponenten in .
Schritt 2.3.5.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 2.3.5.2
Kombiniere und .
Schritt 2.3.5.3
Ziehe das Minuszeichen vor den Bruch.
Schritt 2.3.6
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 2.3.7
Kombiniere und .
Schritt 2.3.8
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 2.3.9
Vereinfache den Zähler.
Schritt 2.3.9.1
Mutltipliziere mit .
Schritt 2.3.9.2
Subtrahiere von .
Schritt 2.3.10
Ziehe das Minuszeichen vor den Bruch.
Schritt 2.3.11
Kombiniere und .
Schritt 2.3.12
Kombiniere und .
Schritt 2.3.13
Multipliziere mit durch Addieren der Exponenten.
Schritt 2.3.13.1
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 2.3.13.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 2.3.13.3
Subtrahiere von .
Schritt 2.3.13.4
Ziehe das Minuszeichen vor den Bruch.
Schritt 2.3.14
Bringe in den Nenner mit Hilfe der Regel des negativen Exponenten .
Schritt 2.3.15
Mutltipliziere mit .
Schritt 2.3.16
Kombiniere und .
Schritt 2.3.17
Ziehe das Minuszeichen vor den Bruch.
Schritt 3
Um die lokalen Maximum- und Minimumwerte einer Funktion zu ermitteln, setze die Ableitung gleich und löse die Gleichung.
Schritt 4
Schritt 4.1
Bestimme die erste Ableitung.
Schritt 4.1.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 4.1.2
Berechne .
Schritt 4.1.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 4.1.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 4.1.2.3
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 4.1.2.4
Kombiniere und .
Schritt 4.1.2.5
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 4.1.2.6
Vereinfache den Zähler.
Schritt 4.1.2.6.1
Mutltipliziere mit .
Schritt 4.1.2.6.2
Subtrahiere von .
Schritt 4.1.2.7
Ziehe das Minuszeichen vor den Bruch.
Schritt 4.1.2.8
Kombiniere und .
Schritt 4.1.2.9
Kombiniere und .
Schritt 4.1.2.10
Mutltipliziere mit .
Schritt 4.1.2.11
Bringe in den Nenner mit Hilfe der Regel des negativen Exponenten .
Schritt 4.1.2.12
Faktorisiere aus heraus.
Schritt 4.1.2.13
Kürze die gemeinsamen Faktoren.
Schritt 4.1.2.13.1
Faktorisiere aus heraus.
Schritt 4.1.2.13.2
Kürze den gemeinsamen Faktor.
Schritt 4.1.2.13.3
Forme den Ausdruck um.
Schritt 4.1.3
Berechne .
Schritt 4.1.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 4.1.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 4.1.3.3
Mutltipliziere mit .
Schritt 4.1.4
Stelle die Terme um.
Schritt 4.2
Die erste Ableitung von nach ist .
Schritt 5
Schritt 5.1
Setze die erste Ableitung gleich .
Schritt 5.2
Finde den Hauptnenner der Terme in der Gleichung.
Schritt 5.2.1
Den Hauptnenner einer Liste von Werten zu bestimmen, ist das gleiche wie das kgV der Nenner dieser Werte zu bestimmen.
Schritt 5.2.2
Das kleinste gemeinsame Vielfache eines beliebigen Ausdrucks ist der Ausdruck.
Schritt 5.3
Multipliziere jeden Term in mit um die Brüche zu eliminieren.
Schritt 5.3.1
Multipliziere jeden Term in mit .
Schritt 5.3.2
Vereinfache die linke Seite.
Schritt 5.3.2.1
Vereinfache jeden Term.
Schritt 5.3.2.1.1
Multipliziere mit durch Addieren der Exponenten.
Schritt 5.3.2.1.1.1
Bewege .
Schritt 5.3.2.1.1.2
Mutltipliziere mit .
Schritt 5.3.2.1.1.2.1
Potenziere mit .
Schritt 5.3.2.1.1.2.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 5.3.2.1.1.3
Schreibe als Bruch mit einem gemeinsamen Nenner.
Schritt 5.3.2.1.1.4
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 5.3.2.1.1.5
Addiere und .
Schritt 5.3.2.1.2
Kürze den gemeinsamen Faktor von .
Schritt 5.3.2.1.2.1
Kürze den gemeinsamen Faktor.
Schritt 5.3.2.1.2.2
Forme den Ausdruck um.
Schritt 5.3.3
Vereinfache die rechte Seite.
Schritt 5.3.3.1
Mutltipliziere mit .
Schritt 5.4
Löse die Gleichung.
Schritt 5.4.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 5.4.2
Potenziere jede Seite der Gleichung mit , um den gebrochenen Exponenten auf der linken Seite zu eliminieren.
Schritt 5.4.3
Vereinfache die linke Seite.
Schritt 5.4.3.1
Vereinfache .
Schritt 5.4.3.1.1
Wende die Produktregel auf an.
Schritt 5.4.3.1.2
Multipliziere die Exponenten in .
Schritt 5.4.3.1.2.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 5.4.3.1.2.2
Kürze den gemeinsamen Faktor von .
Schritt 5.4.3.1.2.2.1
Kürze den gemeinsamen Faktor.
Schritt 5.4.3.1.2.2.2
Forme den Ausdruck um.
Schritt 5.4.3.1.2.3
Kürze den gemeinsamen Faktor von .
Schritt 5.4.3.1.2.3.1
Kürze den gemeinsamen Faktor.
Schritt 5.4.3.1.2.3.2
Forme den Ausdruck um.
Schritt 5.4.3.1.3
Vereinfache.
Schritt 5.4.3.1.4
Stelle die Faktoren in um.
Schritt 5.4.4
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 5.4.4.1
Verwende zunächst den positiven Wert des , um die erste Lösung zu finden.
Schritt 5.4.4.2
Teile jeden Ausdruck in durch und vereinfache.
Schritt 5.4.4.2.1
Teile jeden Ausdruck in durch .
Schritt 5.4.4.2.2
Vereinfache die linke Seite.
Schritt 5.4.4.2.2.1
Kürze den gemeinsamen Faktor.
Schritt 5.4.4.2.2.2
Dividiere durch .
Schritt 5.4.4.3
Als Nächstes verwende den negativen Wert von , um die zweite Lösung zu finden.
Schritt 5.4.4.4
Teile jeden Ausdruck in durch und vereinfache.
Schritt 5.4.4.4.1
Teile jeden Ausdruck in durch .
Schritt 5.4.4.4.2
Vereinfache die linke Seite.
Schritt 5.4.4.4.2.1
Kürze den gemeinsamen Faktor.
Schritt 5.4.4.4.2.2
Dividiere durch .
Schritt 5.4.4.4.3
Vereinfache die rechte Seite.
Schritt 5.4.4.4.3.1
Ziehe das Minuszeichen vor den Bruch.
Schritt 5.4.4.5
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 5.5
Schließe die Lösungen aus, die nicht erfüllen.
Schritt 6
Schritt 6.1
Wandel Ausdrücke mit gebrochenen Exponenten in Wurzeln um.
Schritt 6.1.1
Wende die Regel an, um die Potenz als Wurzel umzuschreiben.
Schritt 6.1.2
Alles, was auf angehoben wird, ist die Basis selbst.
Schritt 6.2
Setze den Nenner in gleich , um zu ermitteln, wo der Ausdruck nicht definiert ist.
Schritt 6.3
Löse nach auf.
Schritt 6.3.1
Um die Wurzel auf der linken Seite der Gleichung zu entfernen, erhebe beide Seiten der Gleichung zur dritten Potenz.
Schritt 6.3.2
Vereinfache jede Seite der Gleichung.
Schritt 6.3.2.1
Benutze , um als neu zu schreiben.
Schritt 6.3.2.2
Vereinfache die linke Seite.
Schritt 6.3.2.2.1
Vereinfache .
Schritt 6.3.2.2.1.1
Multipliziere die Exponenten in .
Schritt 6.3.2.2.1.1.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 6.3.2.2.1.1.2
Kürze den gemeinsamen Faktor von .
Schritt 6.3.2.2.1.1.2.1
Kürze den gemeinsamen Faktor.
Schritt 6.3.2.2.1.1.2.2
Forme den Ausdruck um.
Schritt 6.3.2.2.1.2
Vereinfache.
Schritt 6.3.2.3
Vereinfache die rechte Seite.
Schritt 6.3.2.3.1
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 7
Kritische Punkte zum auswerten.
Schritt 8
Berechne die zweite Ableitung an der Stelle . Wenn die zweite Ableitung positiv ist, dann ist dies ein lokales Minimum. Wenn sie negativ ist, dann ist dies ein lokales Maximum.
Schritt 9
Schritt 9.1
Vereinfache den Ausdruck.
Schritt 9.1.1
Schreibe als um.
Schritt 9.1.2
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 9.2
Kürze den gemeinsamen Faktor von .
Schritt 9.2.1
Kürze den gemeinsamen Faktor.
Schritt 9.2.2
Forme den Ausdruck um.
Schritt 9.3
Vereinfache den Ausdruck.
Schritt 9.3.1
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 9.3.2
Mutltipliziere mit .
Schritt 9.3.3
Der Ausdruck enthält eine Division durch . Der Ausdruck ist nicht definiert.
Undefiniert
Schritt 9.4
Der Ausdruck enthält eine Division durch . Der Ausdruck ist nicht definiert.
Undefiniert
Undefiniert
Schritt 10
Schritt 10.1
Teile in separate Intervalle um die -Werte herum auf, die die erste Ableitung zu oder nicht definiert machen.
Schritt 10.2
Setze eine beliebige Zahl, wie , aus dem Intervall in die erste Ableitung ein, um zu überprüfen, ob das Ergebnis negativ oder positiv ist.
Schritt 10.2.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 10.2.2
Vereinfache das Ergebnis.
Schritt 10.2.2.1
Mutltipliziere mit .
Schritt 10.2.2.2
Die endgültige Lösung ist .
Schritt 10.3
Setze eine beliebige Zahl, wie , aus dem Intervall in die erste Ableitung ein, um zu überprüfen, ob das Ergebnis negativ oder positiv ist.
Schritt 10.3.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 10.3.2
Vereinfache das Ergebnis.
Schritt 10.3.2.1
Mutltipliziere mit .
Schritt 10.3.2.2
Die endgültige Lösung ist .
Schritt 10.4
Da die erste Ableitung um herum das Vorzeichen von positiv zu negativ gewechselt hat, ist ein lokales Maximum.
ist ein lokales Maximum
ist ein lokales Maximum
Schritt 11