Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.2
Berechne .
Schritt 1.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.2.3
Mutltipliziere mit .
Schritt 1.3
Berechne .
Schritt 1.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.3.2
Schreibe als um.
Schritt 1.3.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.3.4
Mutltipliziere mit .
Schritt 1.4
Vereinfache.
Schritt 1.4.1
Schreibe den Ausdruck um mithilfe der Regel des negativen Exponenten .
Schritt 1.4.2
Vereine die Terme
Schritt 1.4.2.1
Kombiniere und .
Schritt 1.4.2.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 2
Schritt 2.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.2
Berechne .
Schritt 2.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.2.3
Mutltipliziere mit .
Schritt 2.3
Berechne .
Schritt 2.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.3.2
Schreibe als um.
Schritt 2.3.3
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 2.3.3.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 2.3.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.3.3.3
Ersetze alle durch .
Schritt 2.3.4
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.3.5
Multipliziere die Exponenten in .
Schritt 2.3.5.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 2.3.5.2
Mutltipliziere mit .
Schritt 2.3.6
Mutltipliziere mit .
Schritt 2.3.7
Potenziere mit .
Schritt 2.3.8
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 2.3.9
Subtrahiere von .
Schritt 2.3.10
Mutltipliziere mit .
Schritt 2.4
Vereinfache.
Schritt 2.4.1
Schreibe den Ausdruck um mithilfe der Regel des negativen Exponenten .
Schritt 2.4.2
Kombiniere und .
Schritt 3
Um die lokalen Maximum- und Minimumwerte einer Funktion zu ermitteln, setze die Ableitung gleich und löse die Gleichung.
Schritt 4
Schritt 4.1
Bestimme die erste Ableitung.
Schritt 4.1.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 4.1.2
Berechne .
Schritt 4.1.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 4.1.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 4.1.2.3
Mutltipliziere mit .
Schritt 4.1.3
Berechne .
Schritt 4.1.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 4.1.3.2
Schreibe als um.
Schritt 4.1.3.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 4.1.3.4
Mutltipliziere mit .
Schritt 4.1.4
Vereinfache.
Schritt 4.1.4.1
Schreibe den Ausdruck um mithilfe der Regel des negativen Exponenten .
Schritt 4.1.4.2
Vereine die Terme
Schritt 4.1.4.2.1
Kombiniere und .
Schritt 4.1.4.2.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 4.2
Die erste Ableitung von nach ist .
Schritt 5
Schritt 5.1
Setze die erste Ableitung gleich .
Schritt 5.2
Finde den Hauptnenner der Terme in der Gleichung.
Schritt 5.2.1
Den Hauptnenner einer Liste von Werten zu bestimmen, ist das gleiche wie das kgV der Nenner dieser Werte zu bestimmen.
Schritt 5.2.2
Das kleinste gemeinsame Vielfache eines beliebigen Ausdrucks ist der Ausdruck.
Schritt 5.3
Multipliziere jeden Term in mit um die Brüche zu eliminieren.
Schritt 5.3.1
Multipliziere jeden Term in mit .
Schritt 5.3.2
Vereinfache die linke Seite.
Schritt 5.3.2.1
Vereinfache jeden Term.
Schritt 5.3.2.1.1
Multipliziere mit durch Addieren der Exponenten.
Schritt 5.3.2.1.1.1
Bewege .
Schritt 5.3.2.1.1.2
Mutltipliziere mit .
Schritt 5.3.2.1.1.2.1
Potenziere mit .
Schritt 5.3.2.1.1.2.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 5.3.2.1.1.3
Addiere und .
Schritt 5.3.2.1.2
Kürze den gemeinsamen Faktor von .
Schritt 5.3.2.1.2.1
Bringe das führende Minuszeichen in in den Zähler.
Schritt 5.3.2.1.2.2
Kürze den gemeinsamen Faktor.
Schritt 5.3.2.1.2.3
Forme den Ausdruck um.
Schritt 5.3.3
Vereinfache die rechte Seite.
Schritt 5.3.3.1
Mutltipliziere mit .
Schritt 5.4
Löse die Gleichung.
Schritt 5.4.1
Addiere zu beiden Seiten der Gleichung.
Schritt 5.4.2
Teile jeden Ausdruck in durch und vereinfache.
Schritt 5.4.2.1
Teile jeden Ausdruck in durch .
Schritt 5.4.2.2
Vereinfache die linke Seite.
Schritt 5.4.2.2.1
Kürze den gemeinsamen Faktor von .
Schritt 5.4.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 5.4.2.2.1.2
Forme den Ausdruck um.
Schritt 5.4.2.2.2
Kürze den gemeinsamen Faktor von .
Schritt 5.4.2.2.2.1
Kürze den gemeinsamen Faktor.
Schritt 5.4.2.2.2.2
Dividiere durch .
Schritt 5.4.2.3
Vereinfache die rechte Seite.
Schritt 5.4.2.3.1
Faktorisiere aus heraus.
Schritt 5.4.2.3.2
Faktorisiere aus heraus.
Schritt 5.4.2.3.3
Separiere Brüche.
Schritt 5.4.2.3.4
Dividiere durch .
Schritt 5.4.2.3.5
Kombiniere und .
Schritt 5.4.3
Ziehe die angegebene Wurzel auf beiden Seiten der Gleichung, um den Exponenten auf der linken Seite zu eliminieren.
Schritt 5.4.4
Vereinfache .
Schritt 5.4.4.1
Schreibe als um.
Schritt 5.4.4.2
Mutltipliziere mit .
Schritt 5.4.4.3
Vereinige und vereinfache den Nenner.
Schritt 5.4.4.3.1
Mutltipliziere mit .
Schritt 5.4.4.3.2
Potenziere mit .
Schritt 5.4.4.3.3
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 5.4.4.3.4
Addiere und .
Schritt 5.4.4.3.5
Schreibe als um.
Schritt 5.4.4.3.5.1
Benutze , um als neu zu schreiben.
Schritt 5.4.4.3.5.2
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 5.4.4.3.5.3
Kombiniere und .
Schritt 5.4.4.3.5.4
Kürze den gemeinsamen Faktor von .
Schritt 5.4.4.3.5.4.1
Kürze den gemeinsamen Faktor.
Schritt 5.4.4.3.5.4.2
Forme den Ausdruck um.
Schritt 5.4.4.3.5.5
Vereinfache.
Schritt 5.4.4.4
Schreibe als um.
Schritt 5.4.4.5
Kombiniere unter Anwendung der Produktregel für das Wurzelziehen.
Schritt 6
Schritt 6.1
Setze den Nenner in gleich , um zu ermitteln, wo der Ausdruck nicht definiert ist.
Schritt 6.2
Löse nach auf.
Schritt 6.2.1
Ziehe die angegebene Wurzel auf beiden Seiten der Gleichung, um den Exponenten auf der linken Seite zu eliminieren.
Schritt 6.2.2
Vereinfache .
Schritt 6.2.2.1
Schreibe als um.
Schritt 6.2.2.2
Ziehe Terme aus der Wurzel heraus unter der Annahme positiver reeller Zahlen.
Schritt 6.2.2.3
Plus oder Minus ist .
Schritt 6.3
Die Gleichung ist nicht definiert, wo der Nenner gleich , das Argument einer Quadratwurzel kleiner als oder das Argument eines Logarithmus kleiner oder gleich ist.
Schritt 7
Kritische Punkte zum auswerten.
Schritt 8
Berechne die zweite Ableitung an der Stelle . Wenn die zweite Ableitung positiv ist, dann ist dies ein lokales Minimum. Wenn sie negativ ist, dann ist dies ein lokales Maximum.
Schritt 9
Schritt 9.1
Vereinfache jeden Term.
Schritt 9.1.1
Vereinfache den Nenner.
Schritt 9.1.1.1
Wende die Produktregel auf an.
Schritt 9.1.1.2
Schreibe als um.
Schritt 9.1.1.2.1
Benutze , um als neu zu schreiben.
Schritt 9.1.1.2.2
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 9.1.1.2.3
Kombiniere und .
Schritt 9.1.1.2.4
Kürze den gemeinsamen Faktor von .
Schritt 9.1.1.2.4.1
Kürze den gemeinsamen Faktor.
Schritt 9.1.1.2.4.2
Forme den Ausdruck um.
Schritt 9.1.1.2.5
Vereinfache.
Schritt 9.1.1.3
Kürze den gemeinsamen Teiler von und .
Schritt 9.1.1.3.1
Faktorisiere aus heraus.
Schritt 9.1.1.3.2
Kürze die gemeinsamen Faktoren.
Schritt 9.1.1.3.2.1
Faktorisiere aus heraus.
Schritt 9.1.1.3.2.2
Kürze den gemeinsamen Faktor.
Schritt 9.1.1.3.2.3
Forme den Ausdruck um.
Schritt 9.1.2
Multipliziere den Zähler mit dem Kehrwert des Nenners.
Schritt 9.1.3
Kürze den gemeinsamen Faktor von .
Schritt 9.1.3.1
Faktorisiere aus heraus.
Schritt 9.1.3.2
Kürze den gemeinsamen Faktor.
Schritt 9.1.3.3
Forme den Ausdruck um.
Schritt 9.2
Addiere und .
Schritt 10
Da der erste Ableitungstest nicht erfolgreich war, gibt es kein lokales Extremum.
Keine lokalen Extrema
Schritt 11