Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.2
Berechne .
Schritt 1.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.2.2
Die Ableitung von nach ist .
Schritt 1.3
Berechne .
Schritt 1.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.3.2
Die Ableitung von nach ist .
Schritt 1.3.3
Mutltipliziere mit .
Schritt 2
Schritt 2.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.2
Berechne .
Schritt 2.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.2.2
Die Ableitung von nach ist .
Schritt 2.2.3
Mutltipliziere mit .
Schritt 2.3
Berechne .
Schritt 2.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.3.2
Die Ableitung von nach ist .
Schritt 3
Um die lokalen Maximum- und Minimumwerte einer Funktion zu ermitteln, setze die Ableitung gleich und löse die Gleichung.
Schritt 4
Teile jeden Term in der Gleichung durch .
Schritt 5
Schritt 5.1
Kürze den gemeinsamen Faktor.
Schritt 5.2
Dividiere durch .
Schritt 6
Separiere Brüche.
Schritt 7
Wandle von nach um.
Schritt 8
Dividiere durch .
Schritt 9
Separiere Brüche.
Schritt 10
Wandle von nach um.
Schritt 11
Dividiere durch .
Schritt 12
Mutltipliziere mit .
Schritt 13
Subtrahiere von beiden Seiten der Gleichung.
Schritt 14
Schritt 14.1
Teile jeden Ausdruck in durch .
Schritt 14.2
Vereinfache die linke Seite.
Schritt 14.2.1
Kürze den gemeinsamen Faktor von .
Schritt 14.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 14.2.1.2
Dividiere durch .
Schritt 14.3
Vereinfache die rechte Seite.
Schritt 14.3.1
Dividiere durch .
Schritt 15
Wende den inversen Tangens auf beide Seiten der Gleichung an, um aus dem Tangens herauszuziehen.
Schritt 16
Schritt 16.1
Berechne .
Schritt 17
Die Tangensfunktion ist negativ im zweiten und vierten Quadranten. Um die zweite Lösung zu finden, subtrahiere den Referenzwinkel von , um die Lösung im dritten Quadranten zu finden.
Schritt 18
Schritt 18.1
Addiere zu .
Schritt 18.2
Der resultierende Winkel von ist positiv und gleich .
Schritt 19
Die Lösung der Gleichung .
Schritt 20
Berechne die zweite Ableitung an der Stelle . Wenn die zweite Ableitung positiv ist, dann ist dies ein lokales Minimum. Wenn sie negativ ist, dann ist dies ein lokales Maximum.
Schritt 21
Schritt 21.1
Vereinfache jeden Term.
Schritt 21.1.1
Mutltipliziere mit .
Schritt 21.1.2
Mutltipliziere mit .
Schritt 21.2
Addiere und .
Schritt 22
ist ein lokales Minimum, weil der Wert der zweiten Ableitung positiv ist. Dies wird auch der Prüfung der zweiten Ableitung genannt.
ist ein lokales Minimum
Schritt 23
Schritt 23.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 23.2
Vereinfache das Ergebnis.
Schritt 23.2.1
Vereinfache jeden Term.
Schritt 23.2.1.1
Mutltipliziere mit .
Schritt 23.2.1.2
Mutltipliziere mit .
Schritt 23.2.2
Subtrahiere von .
Schritt 23.2.3
Die endgültige Lösung ist .
Schritt 24
Berechne die zweite Ableitung an der Stelle . Wenn die zweite Ableitung positiv ist, dann ist dies ein lokales Minimum. Wenn sie negativ ist, dann ist dies ein lokales Maximum.
Schritt 25
Schritt 25.1
Vereinfache jeden Term.
Schritt 25.1.1
Mutltipliziere mit .
Schritt 25.1.2
Mutltipliziere mit .
Schritt 25.2
Subtrahiere von .
Schritt 26
ist ein lokales Maximum, weil der Wert der zweiten Ableitung negativ ist. Dies wird auch Prüfung der zweiten Ableitung genannt.
ist ein lokales Maximum
Schritt 27
Schritt 27.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 27.2
Vereinfache das Ergebnis.
Schritt 27.2.1
Vereinfache jeden Term.
Schritt 27.2.1.1
Mutltipliziere mit .
Schritt 27.2.1.2
Mutltipliziere mit .
Schritt 27.2.2
Addiere und .
Schritt 27.2.3
Die endgültige Lösung ist .
Schritt 28
Dies sind die lokalen Extrema für .
ist ein lokales Minimum
ist ein lokales Maximum
Schritt 29