Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Differenziere.
Schritt 1.1.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.1.2
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.2
Die Ableitung von nach ist .
Schritt 1.3
Addiere und .
Schritt 2
Schritt 2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.2
Schreibe als um.
Schritt 2.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.4
Kombiniere Brüche.
Schritt 2.4.1
Kombiniere und .
Schritt 2.4.2
Vereinfache den Ausdruck.
Schritt 2.4.2.1
Bringe in den Nenner mit Hilfe der Regel des negativen Exponenten .
Schritt 2.4.2.2
Stelle die Faktoren in um.
Schritt 3
Um die lokalen Maximum- und Minimumwerte einer Funktion zu ermitteln, setze die Ableitung gleich und löse die Gleichung.
Schritt 4
Da es keinen Wert von gibt, der die erste Ableitung gleich macht, gibt es keine lokalen Extrema.
Keine lokalen Extrema
Schritt 5
Keine lokalen Extrema
Schritt 6