Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.2
Berechne .
Schritt 1.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.2.3
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 1.2.4
Kombiniere und .
Schritt 1.2.5
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 1.2.6
Vereinfache den Zähler.
Schritt 1.2.6.1
Mutltipliziere mit .
Schritt 1.2.6.2
Subtrahiere von .
Schritt 1.2.7
Kombiniere und .
Schritt 1.2.8
Kombiniere und .
Schritt 1.2.9
Mutltipliziere mit .
Schritt 1.2.10
Faktorisiere aus heraus.
Schritt 1.2.11
Kürze die gemeinsamen Faktoren.
Schritt 1.2.11.1
Faktorisiere aus heraus.
Schritt 1.2.11.2
Kürze den gemeinsamen Faktor.
Schritt 1.2.11.3
Forme den Ausdruck um.
Schritt 1.2.11.4
Dividiere durch .
Schritt 1.3
Berechne .
Schritt 1.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.3.3
Mutltipliziere mit .
Schritt 1.4
Differenziere unter Anwendung der Konstantenregel.
Schritt 1.4.1
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.4.2
Addiere und .
Schritt 2
Schritt 2.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.2
Berechne .
Schritt 2.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.2.3
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 2.2.4
Kombiniere und .
Schritt 2.2.5
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 2.2.6
Vereinfache den Zähler.
Schritt 2.2.6.1
Mutltipliziere mit .
Schritt 2.2.6.2
Subtrahiere von .
Schritt 2.2.7
Kombiniere und .
Schritt 2.2.8
Kombiniere und .
Schritt 2.2.9
Mutltipliziere mit .
Schritt 2.3
Differenziere unter Anwendung der Konstantenregel.
Schritt 2.3.1
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 2.3.2
Addiere und .
Schritt 3
Um die lokalen Maximum- und Minimumwerte einer Funktion zu ermitteln, setze die Ableitung gleich und löse die Gleichung.
Schritt 4
Schritt 4.1
Bestimme die erste Ableitung.
Schritt 4.1.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 4.1.2
Berechne .
Schritt 4.1.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 4.1.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 4.1.2.3
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 4.1.2.4
Kombiniere und .
Schritt 4.1.2.5
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 4.1.2.6
Vereinfache den Zähler.
Schritt 4.1.2.6.1
Mutltipliziere mit .
Schritt 4.1.2.6.2
Subtrahiere von .
Schritt 4.1.2.7
Kombiniere und .
Schritt 4.1.2.8
Kombiniere und .
Schritt 4.1.2.9
Mutltipliziere mit .
Schritt 4.1.2.10
Faktorisiere aus heraus.
Schritt 4.1.2.11
Kürze die gemeinsamen Faktoren.
Schritt 4.1.2.11.1
Faktorisiere aus heraus.
Schritt 4.1.2.11.2
Kürze den gemeinsamen Faktor.
Schritt 4.1.2.11.3
Forme den Ausdruck um.
Schritt 4.1.2.11.4
Dividiere durch .
Schritt 4.1.3
Berechne .
Schritt 4.1.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 4.1.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 4.1.3.3
Mutltipliziere mit .
Schritt 4.1.4
Differenziere unter Anwendung der Konstantenregel.
Schritt 4.1.4.1
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 4.1.4.2
Addiere und .
Schritt 4.2
Die erste Ableitung von nach ist .
Schritt 5
Schritt 5.1
Setze die erste Ableitung gleich .
Schritt 5.2
Addiere zu beiden Seiten der Gleichung.
Schritt 5.3
Potenziere jede Seite der Gleichung mit , um den gebrochenen Exponenten auf der linken Seite zu eliminieren.
Schritt 5.4
Vereinfache die linke Seite.
Schritt 5.4.1
Vereinfache .
Schritt 5.4.1.1
Wende die Produktregel auf an.
Schritt 5.4.1.2
Multipliziere die Exponenten in .
Schritt 5.4.1.2.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 5.4.1.2.2
Kürze den gemeinsamen Faktor von .
Schritt 5.4.1.2.2.1
Kürze den gemeinsamen Faktor.
Schritt 5.4.1.2.2.2
Forme den Ausdruck um.
Schritt 5.4.1.2.3
Kürze den gemeinsamen Faktor von .
Schritt 5.4.1.2.3.1
Kürze den gemeinsamen Faktor.
Schritt 5.4.1.2.3.2
Forme den Ausdruck um.
Schritt 5.4.1.3
Vereinfache.
Schritt 5.4.1.4
Stelle die Faktoren in um.
Schritt 5.5
Teile jeden Ausdruck in durch und vereinfache.
Schritt 5.5.1
Teile jeden Ausdruck in durch .
Schritt 5.5.2
Vereinfache die linke Seite.
Schritt 5.5.2.1
Kürze den gemeinsamen Faktor.
Schritt 5.5.2.2
Dividiere durch .
Schritt 5.5.3
Vereinfache die rechte Seite.
Schritt 5.5.3.1
Wende die Quotientenregel an .
Schritt 5.5.3.2
Vereinfache den Ausdruck.
Schritt 5.5.3.2.1
Dividiere durch .
Schritt 5.5.3.2.2
Schreibe als um.
Schritt 5.5.3.2.3
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 5.5.3.3
Kürze den gemeinsamen Faktor von .
Schritt 5.5.3.3.1
Kürze den gemeinsamen Faktor.
Schritt 5.5.3.3.2
Forme den Ausdruck um.
Schritt 5.5.3.4
Potenziere mit .
Schritt 6
Schritt 6.1
Wende die Regel an, um die Potenz als Wurzel umzuschreiben.
Schritt 6.2
Setze den Radikanden in kleiner als , um zu ermitteln, wo der Ausdruck nicht definiert ist.
Schritt 6.3
Löse nach auf.
Schritt 6.3.1
Ziehe die angegebene Wurzel auf beiden Seiten der Ungleichung, um den Exponenten auf der linken Seite zu eliminieren.
Schritt 6.3.2
Vereinfache die Gleichung.
Schritt 6.3.2.1
Vereinfache die linke Seite.
Schritt 6.3.2.1.1
Ziehe Terme aus der Wurzel heraus.
Schritt 6.3.2.2
Vereinfache die rechte Seite.
Schritt 6.3.2.2.1
Vereinfache .
Schritt 6.3.2.2.1.1
Schreibe als um.
Schritt 6.3.2.2.1.2
Ziehe Terme aus der Wurzel heraus.
Schritt 6.4
Die Gleichung ist nicht definiert, wo der Nenner gleich , das Argument einer Quadratwurzel kleiner als oder das Argument eines Logarithmus kleiner oder gleich ist.
Schritt 7
Kritische Punkte zum auswerten.
Schritt 8
Berechne die zweite Ableitung an der Stelle . Wenn die zweite Ableitung positiv ist, dann ist dies ein lokales Minimum. Wenn sie negativ ist, dann ist dies ein lokales Maximum.
Schritt 9
Schritt 9.1
Vereinfache den Zähler.
Schritt 9.1.1
Schreibe als um.
Schritt 9.1.2
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 9.1.3
Kürze den gemeinsamen Faktor von .
Schritt 9.1.3.1
Kürze den gemeinsamen Faktor.
Schritt 9.1.3.2
Forme den Ausdruck um.
Schritt 9.1.4
Berechne den Exponenten.
Schritt 9.2
Mutltipliziere mit .
Schritt 10
ist ein lokales Minimum, weil der Wert der zweiten Ableitung positiv ist. Dies wird auch der Prüfung der zweiten Ableitung genannt.
ist ein lokales Minimum
Schritt 11
Schritt 11.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 11.2
Vereinfache das Ergebnis.
Schritt 11.2.1
Vereinfache jeden Term.
Schritt 11.2.1.1
Schreibe als um.
Schritt 11.2.1.2
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 11.2.1.3
Kürze den gemeinsamen Faktor von .
Schritt 11.2.1.3.1
Kürze den gemeinsamen Faktor.
Schritt 11.2.1.3.2
Forme den Ausdruck um.
Schritt 11.2.1.4
Potenziere mit .
Schritt 11.2.1.5
Mutltipliziere mit .
Schritt 11.2.1.6
Mutltipliziere mit .
Schritt 11.2.2
Vereinfache durch Substrahieren von Zahlen.
Schritt 11.2.2.1
Subtrahiere von .
Schritt 11.2.2.2
Subtrahiere von .
Schritt 11.2.3
Die endgültige Lösung ist .
Schritt 12
Dies sind die lokalen Extrema für .
ist ein lokales Minimum
Schritt 13