Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.3
Mutltipliziere mit .
Schritt 2
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 3
Um die lokalen Maximum- und Minimumwerte einer Funktion zu ermitteln, setze die Ableitung gleich und löse die Gleichung.
Schritt 4
Schritt 4.1
Bestimme die erste Ableitung.
Schritt 4.1.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 4.1.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 4.1.3
Mutltipliziere mit .
Schritt 4.2
Die erste Ableitung von nach ist .
Schritt 5
Schritt 5.1
Setze die erste Ableitung gleich .
Schritt 5.2
Teile jeden Ausdruck in durch und vereinfache.
Schritt 5.2.1
Teile jeden Ausdruck in durch .
Schritt 5.2.2
Vereinfache die linke Seite.
Schritt 5.2.2.1
Kürze den gemeinsamen Faktor von .
Schritt 5.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 5.2.2.1.2
Dividiere durch .
Schritt 5.2.3
Vereinfache die rechte Seite.
Schritt 5.2.3.1
Dividiere durch .
Schritt 6
Kritische Punkte zum auswerten.
Schritt 7
Berechne die zweite Ableitung an der Stelle . Wenn die zweite Ableitung positiv ist, dann ist dies ein lokales Minimum. Wenn sie negativ ist, dann ist dies ein lokales Maximum.
Schritt 8
Da der erste Ableitungstest nicht erfolgreich war, gibt es kein lokales Extremum.
Keine lokalen Extrema
Schritt 9