Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Bringe den Grenzwert unter das Wurzelzeichen.
Schritt 2
Zerlege den Grenzwert unter Anwendung der Quotientenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 3
Zerlege den Grenzwert unter Anwendung der Summenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 4
Berechne den Grenzwert von , welcher konstant ist, wenn sich annähert.
Schritt 5
Zerlege den Grenzwert unter Anwendung der Summenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 6
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 7
Ziehe den Exponenten von aus dem Grenzwert durch Anwendung der Potenzregel für Grenzwerte.
Schritt 8
Berechne den Grenzwert von , welcher konstant ist, wenn sich annähert.
Schritt 9
Schritt 9.1
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 9.2
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 10
Schritt 10.1
Mutltipliziere mit .
Schritt 10.2
Subtrahiere von .
Schritt 10.3
Potenziere mit .
Schritt 10.4
Mutltipliziere mit .
Schritt 10.5
Addiere und .
Schritt 10.6
Vereinfache den Ausdruck durch Kürzen der gemeinsamen Faktoren.
Schritt 10.6.1
Kürze den gemeinsamen Teiler von und .
Schritt 10.6.1.1
Faktorisiere aus heraus.
Schritt 10.6.1.2
Kürze die gemeinsamen Faktoren.
Schritt 10.6.1.2.1
Faktorisiere aus heraus.
Schritt 10.6.1.2.2
Kürze den gemeinsamen Faktor.
Schritt 10.6.1.2.3
Forme den Ausdruck um.
Schritt 10.6.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 10.7
Schreibe als um.
Schritt 10.8
Ziehe Terme von unter der Wurzel heraus unter der Annahme reeller Zahlen.
Schritt 11
Das Ergebnis kann in mehreren Formen wiedergegeben werden.
Exakte Form:
Dezimalform: