Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Berechne den Grenzwert des Zählers und den Grenzwert des Nenners.
Schritt 1.1.1
Bilde den Grenzwert für den Zähler und den Grenzwert für den Nenner.
Schritt 1.1.2
Berechne den Grenzwert des Zählers.
Schritt 1.1.2.1
Berechne den Grenzwert.
Schritt 1.1.2.1.1
Zerlege den Grenzwert unter Anwendung der Summenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 1.1.2.1.2
Berechne den Grenzwert von , welcher konstant ist, wenn sich annähert.
Schritt 1.1.2.1.3
Bringe den Grenzwert in die trigonometrische Funktion, da der Sekans ist stetig.
Schritt 1.1.2.1.4
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 1.1.2.2
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 1.1.2.3
Vereinfache die Lösung.
Schritt 1.1.2.3.1
Vereinfache jeden Term.
Schritt 1.1.2.3.1.1
Mutltipliziere mit .
Schritt 1.1.2.3.1.2
Der genau Wert von ist .
Schritt 1.1.2.3.1.3
Mutltipliziere mit .
Schritt 1.1.2.3.2
Subtrahiere von .
Schritt 1.1.3
Berechne den Grenzwert des Nenners.
Schritt 1.1.3.1
Berechne den Grenzwert.
Schritt 1.1.3.1.1
Ziehe den Exponenten von aus dem Grenzwert durch Anwendung der Potenzregel für Grenzwerte.
Schritt 1.1.3.1.2
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 1.1.3.2
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 1.1.3.3
Vereinfache die Lösung.
Schritt 1.1.3.3.1
Mutltipliziere mit .
Schritt 1.1.3.3.2
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 1.1.3.3.3
Der Ausdruck enthält eine Division durch . Der Ausdruck ist nicht definiert.
Undefiniert
Schritt 1.1.3.4
Der Ausdruck enthält eine Division durch . Der Ausdruck ist nicht definiert.
Undefiniert
Schritt 1.1.4
Der Ausdruck enthält eine Division durch . Der Ausdruck ist nicht definiert.
Undefiniert
Schritt 1.2
Da unbestimmt ist, wende die Regel von L'Hospital an. Die Regel von L'Hospital besagt, dass der Grenzwert eines Quotienten von Funktionen gleich dem Grenzwert des Quotienten ihrer Ableitungen ist.
Schritt 1.3
Bestimme die Ableitung des Zählers und des Nenners.
Schritt 1.3.1
Differenziere den Zähler und Nenner.
Schritt 1.3.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.3.3
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.3.4
Berechne .
Schritt 1.3.4.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.3.4.2
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 1.3.4.2.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 1.3.4.2.2
Die Ableitung von nach ist .
Schritt 1.3.4.2.3
Ersetze alle durch .
Schritt 1.3.4.3
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.3.4.4
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.3.4.5
Mutltipliziere mit .
Schritt 1.3.4.6
Bringe auf die linke Seite von .
Schritt 1.3.4.7
Mutltipliziere mit .
Schritt 1.3.5
Subtrahiere von .
Schritt 1.3.6
Wende die Produktregel auf an.
Schritt 1.3.7
Potenziere mit .
Schritt 1.3.8
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.3.9
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.3.10
Mutltipliziere mit .
Schritt 1.4
Kürze den gemeinsamen Teiler von und .
Schritt 1.4.1
Faktorisiere aus heraus.
Schritt 1.4.2
Kürze die gemeinsamen Faktoren.
Schritt 1.4.2.1
Faktorisiere aus heraus.
Schritt 1.4.2.2
Kürze den gemeinsamen Faktor.
Schritt 1.4.2.3
Forme den Ausdruck um.
Schritt 2
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 3
Schritt 3.1
Berechne den Grenzwert des Zählers und den Grenzwert des Nenners.
Schritt 3.1.1
Bilde den Grenzwert für den Zähler und den Grenzwert für den Nenner.
Schritt 3.1.2
Berechne den Grenzwert des Zählers.
Schritt 3.1.2.1
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 3.1.2.2
Zerlege den Grenzwert unter Anwendung der Produktregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 3.1.2.3
Bringe den Grenzwert in die trigonometrische Funktion, da der Sekans ist stetig.
Schritt 3.1.2.4
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 3.1.2.5
Bringe den Grenzwert in die trigonometrische Funktion, da der Tangens stetig ist.
Schritt 3.1.2.6
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 3.1.2.7
Berechne die Grenzwerte durch Einsetzen von für alle .
Schritt 3.1.2.7.1
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 3.1.2.7.2
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 3.1.2.8
Vereinfache die Lösung.
Schritt 3.1.2.8.1
Mutltipliziere mit .
Schritt 3.1.2.8.2
Der genau Wert von ist .
Schritt 3.1.2.8.3
Mutltipliziere mit .
Schritt 3.1.2.8.4
Mutltipliziere mit .
Schritt 3.1.2.8.5
Der genau Wert von ist .
Schritt 3.1.2.8.6
Mutltipliziere mit .
Schritt 3.1.3
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 3.1.4
Der Ausdruck enthält eine Division durch . Der Ausdruck ist nicht definiert.
Undefiniert
Schritt 3.2
Da unbestimmt ist, wende die Regel von L'Hospital an. Die Regel von L'Hospital besagt, dass der Grenzwert eines Quotienten von Funktionen gleich dem Grenzwert des Quotienten ihrer Ableitungen ist.
Schritt 3.3
Bestimme die Ableitung des Zählers und des Nenners.
Schritt 3.3.1
Differenziere den Zähler und Nenner.
Schritt 3.3.2
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.3.3
Differenziere unter Anwendung der Produktregel, die besagt, dass gleich ist mit und .
Schritt 3.3.4
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 3.3.4.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 3.3.4.2
Die Ableitung von nach ist .
Schritt 3.3.4.3
Ersetze alle durch .
Schritt 3.3.5
Potenziere mit .
Schritt 3.3.6
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 3.3.7
Addiere und .
Schritt 3.3.8
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.3.9
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.3.10
Mutltipliziere mit .
Schritt 3.3.11
Bringe auf die linke Seite von .
Schritt 3.3.12
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 3.3.12.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 3.3.12.2
Die Ableitung von nach ist .
Schritt 3.3.12.3
Ersetze alle durch .
Schritt 3.3.13
Potenziere mit .
Schritt 3.3.14
Potenziere mit .
Schritt 3.3.15
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 3.3.16
Addiere und .
Schritt 3.3.17
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.3.18
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.3.19
Mutltipliziere mit .
Schritt 3.3.20
Bringe auf die linke Seite von .
Schritt 3.3.21
Vereinfache.
Schritt 3.3.21.1
Wende das Distributivgesetz an.
Schritt 3.3.21.2
Vereine die Terme
Schritt 3.3.21.2.1
Mutltipliziere mit .
Schritt 3.3.21.2.2
Mutltipliziere mit .
Schritt 3.3.21.3
Stelle die Terme um.
Schritt 3.3.22
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.4
Dividiere durch .
Schritt 4
Schritt 4.1
Zerlege den Grenzwert unter Anwendung der Summenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 4.2
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 4.3
Zerlege den Grenzwert unter Anwendung der Produktregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 4.4
Ziehe den Exponenten von aus dem Grenzwert durch Anwendung der Potenzregel für Grenzwerte.
Schritt 4.5
Bringe den Grenzwert in die trigonometrische Funktion, da der Tangens stetig ist.
Schritt 4.6
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 4.7
Bringe den Grenzwert in die trigonometrische Funktion, da der Sekans ist stetig.
Schritt 4.8
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 4.9
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 4.10
Ziehe den Exponenten von aus dem Grenzwert durch Anwendung der Potenzregel für Grenzwerte.
Schritt 4.11
Bringe den Grenzwert in die trigonometrische Funktion, da der Sekans ist stetig.
Schritt 4.12
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 5
Schritt 5.1
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 5.2
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 5.3
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 6
Schritt 6.1
Vereinfache jeden Term.
Schritt 6.1.1
Mutltipliziere mit .
Schritt 6.1.2
Der genau Wert von ist .
Schritt 6.1.3
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 6.1.4
Mutltipliziere mit .
Schritt 6.1.5
Mutltipliziere mit .
Schritt 6.1.6
Der genau Wert von ist .
Schritt 6.1.7
Mutltipliziere mit .
Schritt 6.1.8
Mutltipliziere mit .
Schritt 6.1.9
Der genau Wert von ist .
Schritt 6.1.10
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 6.1.11
Mutltipliziere mit .
Schritt 6.2
Subtrahiere von .
Schritt 6.3
Kürze den gemeinsamen Faktor von .
Schritt 6.3.1
Faktorisiere aus heraus.
Schritt 6.3.2
Faktorisiere aus heraus.
Schritt 6.3.3
Kürze den gemeinsamen Faktor.
Schritt 6.3.4
Forme den Ausdruck um.
Schritt 6.4
Kombiniere und .
Schritt 6.5
Ziehe das Minuszeichen vor den Bruch.
Schritt 7
Das Ergebnis kann in mehreren Formen wiedergegeben werden.
Exakte Form:
Dezimalform: