Analysis Beispiele

Berechne den Grenzwert Grenzwert von (cos(pi/2-x)-cos(pi/2))/x, wenn x gegen 0 geht
Schritt 1
Vereine die Terme
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 1.2
Kombiniere und .
Schritt 1.3
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 2
Mutltipliziere mit .
Schritt 3
Wende die Regel von de L’Hospital an.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Berechne den Grenzwert des Zählers und den Grenzwert des Nenners.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.1
Bilde den Grenzwert für den Zähler und den Grenzwert für den Nenner.
Schritt 3.1.2
Berechne den Grenzwert des Zählers.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.2.1
Berechne den Grenzwert.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.2.1.1
Zerlege den Grenzwert unter Anwendung der Summenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 3.1.2.1.2
Bringe den Grenzwert in die trigonometrische Funktion, da der Kosinus stetig ist.
Schritt 3.1.2.1.3
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 3.1.2.1.4
Zerlege den Grenzwert unter Anwendung der Summenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 3.1.2.1.5
Berechne den Grenzwert von , welcher konstant ist, wenn sich annähert.
Schritt 3.1.2.1.6
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 3.1.2.1.7
Berechne den Grenzwert von , welcher konstant ist, wenn sich annähert.
Schritt 3.1.2.2
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 3.1.2.3
Vereinfache die Lösung.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.2.3.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.2.3.1.1
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.2.3.1.1.1
Mutltipliziere mit .
Schritt 3.1.2.3.1.1.2
Mutltipliziere mit .
Schritt 3.1.2.3.1.2
Addiere und .
Schritt 3.1.2.3.1.3
Kombiniere und .
Schritt 3.1.2.3.1.4
Der genau Wert von ist .
Schritt 3.1.2.3.1.5
Der genau Wert von ist .
Schritt 3.1.2.3.1.6
Mutltipliziere mit .
Schritt 3.1.2.3.2
Addiere und .
Schritt 3.1.3
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 3.1.4
Der Ausdruck enthält eine Division durch . Der Ausdruck ist nicht definiert.
Undefiniert
Schritt 3.2
Da unbestimmt ist, wende die Regel von L'Hospital an. Die Regel von L'Hospital besagt, dass der Grenzwert eines Quotienten von Funktionen gleich dem Grenzwert des Quotienten ihrer Ableitungen ist.
Schritt 3.3
Bestimme die Ableitung des Zählers und des Nenners.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.1
Differenziere den Zähler und Nenner.
Schritt 3.3.2
Der genau Wert von ist .
Schritt 3.3.3
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 3.3.4
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.4.1
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.4.1.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 3.3.4.1.2
Die Ableitung von nach ist .
Schritt 3.3.4.1.3
Ersetze alle durch .
Schritt 3.3.4.2
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.3.4.3
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 3.3.4.4
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 3.3.4.5
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.3.4.6
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.3.4.7
Mutltipliziere mit .
Schritt 3.3.4.8
Subtrahiere von .
Schritt 3.3.4.9
Kombiniere und .
Schritt 3.3.4.10
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.4.10.1
Faktorisiere aus heraus.
Schritt 3.3.4.10.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.4.10.2.1
Faktorisiere aus heraus.
Schritt 3.3.4.10.2.2
Kürze den gemeinsamen Faktor.
Schritt 3.3.4.10.2.3
Forme den Ausdruck um.
Schritt 3.3.4.10.2.4
Dividiere durch .
Schritt 3.3.4.11
Mutltipliziere mit .
Schritt 3.3.4.12
Mutltipliziere mit .
Schritt 3.3.5
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.5.1
Mutltipliziere mit .
Schritt 3.3.5.2
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 3.3.6
Addiere und .
Schritt 3.3.7
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.4
Dividiere durch .
Schritt 4
Berechne den Grenzwert.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Bringe den Grenzwert in die trigonometrische Funktion, da der Sinus stetig ist.
Schritt 4.2
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 4.3
Zerlege den Grenzwert unter Anwendung der Summenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 4.4
Berechne den Grenzwert von , welcher konstant ist, wenn sich annähert.
Schritt 4.5
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 5
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 6
Vereinfache die Lösung.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1.1
Mutltipliziere mit .
Schritt 6.1.2
Mutltipliziere mit .
Schritt 6.2
Addiere und .
Schritt 6.3
Kombiniere und .
Schritt 6.4
Der genau Wert von ist .