Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Schreibe mithilfe von Sinus und Kosinus um.
Schritt 1.2
Multipliziere mit dem Kehrwert des Bruchs, um durch zu dividieren.
Schritt 1.3
Wandle von nach um.
Schritt 2
Schritt 2.1
Berechne den Grenzwert des Zählers und den Grenzwert des Nenners.
Schritt 2.1.1
Bilde den Grenzwert für den Zähler und den Grenzwert für den Nenner.
Schritt 2.1.2
Berechne den Grenzwert des Zählers.
Schritt 2.1.2.1
Berechne den Grenzwert.
Schritt 2.1.2.1.1
Bringe den Grenzwert in den Logarithmus.
Schritt 2.1.2.1.2
Zerlege den Grenzwert unter Anwendung der Summenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 2.1.2.1.3
Berechne den Grenzwert von , welcher konstant ist, wenn sich annähert.
Schritt 2.1.2.1.4
Bringe den Grenzwert in die trigonometrische Funktion, da der Sinus stetig ist.
Schritt 2.1.2.1.5
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 2.1.2.2
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 2.1.2.3
Vereinfache die Lösung.
Schritt 2.1.2.3.1
Vereinfache jeden Term.
Schritt 2.1.2.3.1.1
Mutltipliziere mit .
Schritt 2.1.2.3.1.2
Der genau Wert von ist .
Schritt 2.1.2.3.2
Addiere und .
Schritt 2.1.2.3.3
Der natürliche Logarithmus von ist .
Schritt 2.1.3
Berechne den Grenzwert des Nenners.
Schritt 2.1.3.1
Bringe den Grenzwert in die trigonometrische Funktion, da der Tangens stetig ist.
Schritt 2.1.3.2
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 2.1.3.3
Der genau Wert von ist .
Schritt 2.1.3.4
Der Ausdruck enthält eine Division durch . Der Ausdruck ist nicht definiert.
Undefiniert
Schritt 2.1.4
Der Ausdruck enthält eine Division durch . Der Ausdruck ist nicht definiert.
Undefiniert
Schritt 2.2
Da unbestimmt ist, wende die Regel von L'Hospital an. Die Regel von L'Hospital besagt, dass der Grenzwert eines Quotienten von Funktionen gleich dem Grenzwert des Quotienten ihrer Ableitungen ist.
Schritt 2.3
Bestimme die Ableitung des Zählers und des Nenners.
Schritt 2.3.1
Differenziere den Zähler und Nenner.
Schritt 2.3.2
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 2.3.2.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 2.3.2.2
Die Ableitung von nach ist .
Schritt 2.3.2.3
Ersetze alle durch .
Schritt 2.3.3
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.3.4
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 2.3.5
Addiere und .
Schritt 2.3.6
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 2.3.6.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 2.3.6.2
Die Ableitung von nach ist .
Schritt 2.3.6.3
Ersetze alle durch .
Schritt 2.3.7
Kombiniere und .
Schritt 2.3.8
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.3.9
Kombiniere und .
Schritt 2.3.10
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.3.11
Mutltipliziere mit .
Schritt 2.3.12
Die Ableitung von nach ist .
Schritt 2.4
Multipliziere den Zähler mit dem Kehrwert des Nenners.
Schritt 2.5
Mutltipliziere mit .
Schritt 3
Schritt 3.1
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 3.2
Zerlege den Grenzwert unter Anwendung der Quotientenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 3.3
Bringe den Grenzwert in die trigonometrische Funktion, da der Kosinus stetig ist.
Schritt 3.4
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 3.5
Zerlege den Grenzwert unter Anwendung der Produktregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 3.6
Zerlege den Grenzwert unter Anwendung der Summenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 3.7
Berechne den Grenzwert von , welcher konstant ist, wenn sich annähert.
Schritt 3.8
Bringe den Grenzwert in die trigonometrische Funktion, da der Sinus stetig ist.
Schritt 3.9
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 3.10
Ziehe den Exponenten von aus dem Grenzwert durch Anwendung der Potenzregel für Grenzwerte.
Schritt 3.11
Bringe den Grenzwert in die trigonometrische Funktion, da der Sekans ist stetig.
Schritt 4
Schritt 4.1
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 4.2
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 4.3
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 5
Schritt 5.1
Vereinfache den Zähler.
Schritt 5.1.1
Mutltipliziere mit .
Schritt 5.1.2
Der genau Wert von ist .
Schritt 5.2
Vereinfache den Nenner.
Schritt 5.2.1
Mutltipliziere mit .
Schritt 5.2.2
Der genau Wert von ist .
Schritt 5.2.3
Addiere und .
Schritt 5.2.4
Mutltipliziere mit .
Schritt 5.2.5
Der genau Wert von ist .
Schritt 5.2.6
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 5.3
Kürze den gemeinsamen Faktor von .
Schritt 5.3.1
Kürze den gemeinsamen Faktor.
Schritt 5.3.2
Forme den Ausdruck um.
Schritt 5.4
Mutltipliziere mit .