Analysis Beispiele

Berechne den Grenzwert Limes von (x- Quadratwurzel von x)/(x+ Quadratwurzel von x) für x gegen infinity
Schritt 1
Teile den Zähler und Nenner durch die höchste Potenz von im Nenner, was ist.
Schritt 2
Berechne den Grenzwert.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.1
Kürze den gemeinsamen Faktor.
Schritt 2.1.2
Forme den Ausdruck um.
Schritt 2.2
Vereinfache den Ausdruck durch Kürzen der gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Kürze den gemeinsamen Faktor von .
Schritt 2.2.2
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.2.1
Potenziere mit .
Schritt 2.2.2.2
Faktorisiere aus heraus.
Schritt 2.2.2.3
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.2.3.1
Faktorisiere aus heraus.
Schritt 2.2.2.3.2
Kürze den gemeinsamen Faktor.
Schritt 2.2.2.3.3
Forme den Ausdruck um.
Schritt 2.2.3
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.3.1
Potenziere mit .
Schritt 2.2.3.2
Faktorisiere aus heraus.
Schritt 2.2.3.3
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.3.3.1
Faktorisiere aus heraus.
Schritt 2.2.3.3.2
Kürze den gemeinsamen Faktor.
Schritt 2.2.3.3.3
Forme den Ausdruck um.
Schritt 2.3
Zerlege den Grenzwert unter Anwendung der Quotientenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 2.4
Zerlege den Grenzwert unter Anwendung der Summenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 2.5
Berechne den Grenzwert von , welcher konstant ist, wenn sich annähert.
Schritt 2.6
Bringe den Grenzwert unter das Wurzelzeichen.
Schritt 3
Da sein Zähler sich einer reellen Zahl nähert, während sein Nenner unbegrenzt ist, nähert sich der Bruch .
Schritt 4
Berechne den Grenzwert.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Zerlege den Grenzwert unter Anwendung der Summenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 4.2
Berechne den Grenzwert von , welcher konstant ist, wenn sich annähert.
Schritt 4.3
Bringe den Grenzwert unter das Wurzelzeichen.
Schritt 5
Da sein Zähler sich einer reellen Zahl nähert, während sein Nenner unbegrenzt ist, nähert sich der Bruch .
Schritt 6
Vereinfache die Lösung.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1.1
Schreibe als um.
Schritt 6.1.2
Ziehe Terme aus der Wurzel heraus unter der Annahme positiver reeller Zahlen.
Schritt 6.1.3
Mutltipliziere mit .
Schritt 6.1.4
Addiere und .
Schritt 6.2
Vereinfache den Nenner.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.1
Schreibe als um.
Schritt 6.2.2
Ziehe Terme aus der Wurzel heraus unter der Annahme positiver reeller Zahlen.
Schritt 6.2.3
Addiere und .
Schritt 6.3
Dividiere durch .