Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Zerlege den Grenzwert unter Anwendung der Summenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 2
Zerlege den Grenzwert unter Anwendung der Quotientenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 3
Zerlege den Grenzwert unter Anwendung der Summenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 4
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 5
Ziehe den Exponenten von aus dem Grenzwert durch Anwendung der Potenzregel für Grenzwerte.
Schritt 6
Berechne den Grenzwert von , welcher konstant ist, wenn sich annähert.
Schritt 7
Zerlege den Grenzwert unter Anwendung der Summenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 8
Berechne den Grenzwert von , welcher konstant ist, wenn sich annähert.
Schritt 9
Zerlege den Grenzwert unter Anwendung der Quotientenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 10
Zerlege den Grenzwert unter Anwendung der Summenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 11
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 12
Ziehe den Exponenten von aus dem Grenzwert durch Anwendung der Potenzregel für Grenzwerte.
Schritt 13
Berechne den Grenzwert von , welcher konstant ist, wenn sich annähert.
Schritt 14
Zerlege den Grenzwert unter Anwendung der Summenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 15
Berechne den Grenzwert von , welcher konstant ist, wenn sich annähert.
Schritt 16
Schritt 16.1
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 16.2
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 16.3
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 16.4
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 17
Schritt 17.1
Vereinfache jeden Term.
Schritt 17.1.1
Vereinfache den Zähler.
Schritt 17.1.1.1
Potenziere mit .
Schritt 17.1.1.2
Mutltipliziere mit .
Schritt 17.1.1.3
Addiere und .
Schritt 17.1.2
Addiere und .
Schritt 17.1.3
Kürze den gemeinsamen Teiler von und .
Schritt 17.1.3.1
Faktorisiere aus heraus.
Schritt 17.1.3.2
Kürze die gemeinsamen Faktoren.
Schritt 17.1.3.2.1
Faktorisiere aus heraus.
Schritt 17.1.3.2.2
Kürze den gemeinsamen Faktor.
Schritt 17.1.3.2.3
Forme den Ausdruck um.
Schritt 17.1.4
Vereinfache den Zähler.
Schritt 17.1.4.1
Potenziere mit .
Schritt 17.1.4.2
Mutltipliziere mit .
Schritt 17.1.4.3
Addiere und .
Schritt 17.1.5
Vereinfache den Nenner.
Schritt 17.1.5.1
Mutltipliziere mit .
Schritt 17.1.5.2
Subtrahiere von .
Schritt 17.2
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 17.3
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 17.4
Schreibe jeden Ausdruck mit einem gemeinsamen Nenner von , indem du jeden mit einem entsprechenden Faktor von multiplizierst.
Schritt 17.4.1
Mutltipliziere mit .
Schritt 17.4.2
Mutltipliziere mit .
Schritt 17.4.3
Mutltipliziere mit .
Schritt 17.4.4
Mutltipliziere mit .
Schritt 17.5
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 17.6
Vereinfache den Zähler.
Schritt 17.6.1
Mutltipliziere mit .
Schritt 17.6.2
Mutltipliziere mit .
Schritt 17.6.3
Subtrahiere von .
Schritt 17.7
Ziehe das Minuszeichen vor den Bruch.
Schritt 18
Das Ergebnis kann in mehreren Formen wiedergegeben werden.
Exakte Form:
Dezimalform: