Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Bestimme die erste Ableitung.
Schritt 1.1.1
Schreibe als um.
Schritt 1.1.2
Multipliziere aus unter Verwendung der FOIL-Methode.
Schritt 1.1.2.1
Wende das Distributivgesetz an.
Schritt 1.1.2.2
Wende das Distributivgesetz an.
Schritt 1.1.2.3
Wende das Distributivgesetz an.
Schritt 1.1.3
Vereinfache und fasse gleichartige Terme zusammen.
Schritt 1.1.3.1
Vereinfache jeden Term.
Schritt 1.1.3.1.1
Mutltipliziere mit .
Schritt 1.1.3.1.2
Bringe auf die linke Seite von .
Schritt 1.1.3.1.3
Mutltipliziere mit .
Schritt 1.1.3.2
Addiere und .
Schritt 1.1.4
Differenziere unter Anwendung der Produktregel, die besagt, dass gleich ist mit und .
Schritt 1.1.5
Differenziere.
Schritt 1.1.5.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.1.5.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.5.3
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.1.5.4
Vereinfache den Ausdruck.
Schritt 1.1.5.4.1
Addiere und .
Schritt 1.1.5.4.2
Mutltipliziere mit .
Schritt 1.1.5.5
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.1.5.6
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.5.7
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.1.5.8
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.5.9
Mutltipliziere mit .
Schritt 1.1.5.10
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.1.5.11
Addiere und .
Schritt 1.1.6
Vereinfache.
Schritt 1.1.6.1
Wende das Distributivgesetz an.
Schritt 1.1.6.2
Wende das Distributivgesetz an.
Schritt 1.1.6.3
Wende das Distributivgesetz an.
Schritt 1.1.6.4
Vereine die Terme
Schritt 1.1.6.4.1
Potenziere mit .
Schritt 1.1.6.4.2
Potenziere mit .
Schritt 1.1.6.4.3
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 1.1.6.4.4
Addiere und .
Schritt 1.1.6.4.5
Mutltipliziere mit .
Schritt 1.1.6.4.6
Bringe auf die linke Seite von .
Schritt 1.1.6.4.7
Mutltipliziere mit .
Schritt 1.1.6.4.8
Addiere und .
Schritt 1.1.6.4.9
Addiere und .
Schritt 1.1.6.4.10
Addiere und .
Schritt 1.1.6.4.11
Subtrahiere von .
Schritt 1.1.6.4.12
Addiere und .
Schritt 1.2
Die erste Ableitung von nach ist .
Schritt 2
Schritt 2.1
Setze die erste Ableitung gleich .
Schritt 2.2
Faktorisiere aus heraus.
Schritt 2.2.1
Faktorisiere aus heraus.
Schritt 2.2.2
Faktorisiere aus heraus.
Schritt 2.2.3
Faktorisiere aus heraus.
Schritt 2.3
Wenn irgendein einzelner Faktor auf der linken Seite der Gleichung gleich ist, dann ist der ganze Ausdruck gleich .
Schritt 2.4
Setze gleich .
Schritt 2.5
Setze gleich und löse nach auf.
Schritt 2.5.1
Setze gleich .
Schritt 2.5.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 2.6
Die endgültige Lösung sind alle Werte, die wahr machen.
Schritt 3
Schritt 3.1
Der Definitionsbereich umfasst alle reellen Zahlen, ausgenommen jene, für die der Ausdruck nicht definiert ist. In diesem Fall gibt es keine reellen Zahlen, für die der Ausdruck nicht definiert ist.
Schritt 4
Schritt 4.1
Berechne bei .
Schritt 4.1.1
Ersetze durch .
Schritt 4.1.2
Vereinfache.
Schritt 4.1.2.1
Addiere und .
Schritt 4.1.2.2
Potenziere mit .
Schritt 4.1.2.3
Subtrahiere von .
Schritt 4.1.2.4
Mutltipliziere mit .
Schritt 4.2
Berechne bei .
Schritt 4.2.1
Ersetze durch .
Schritt 4.2.2
Vereinfache.
Schritt 4.2.2.1
Addiere und .
Schritt 4.2.2.2
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 4.2.2.3
Subtrahiere von .
Schritt 4.2.2.4
Mutltipliziere mit .
Schritt 4.3
Liste all Punkte auf.
Schritt 5