Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.2
Berechne .
Schritt 1.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.2.3
Mutltipliziere mit .
Schritt 1.3
Berechne .
Schritt 1.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.3.3
Mutltipliziere mit .
Schritt 1.4
Differenziere unter Anwendung der Konstantenregel.
Schritt 1.4.1
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.4.2
Addiere und .
Schritt 2
Schritt 2.1
Addiere zu beiden Seiten der Gleichung.
Schritt 2.2
Teile jeden Ausdruck in durch und vereinfache.
Schritt 2.2.1
Teile jeden Ausdruck in durch .
Schritt 2.2.2
Vereinfache die linke Seite.
Schritt 2.2.2.1
Kürze den gemeinsamen Faktor von .
Schritt 2.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 2.2.2.1.2
Dividiere durch .
Schritt 2.2.3
Vereinfache die rechte Seite.
Schritt 2.2.3.1
Kürze den gemeinsamen Teiler von und .
Schritt 2.2.3.1.1
Faktorisiere aus heraus.
Schritt 2.2.3.1.2
Kürze die gemeinsamen Faktoren.
Schritt 2.2.3.1.2.1
Faktorisiere aus heraus.
Schritt 2.2.3.1.2.2
Kürze den gemeinsamen Faktor.
Schritt 2.2.3.1.2.3
Forme den Ausdruck um.
Schritt 3
Schritt 3.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 3.2
Vereinfache das Ergebnis.
Schritt 3.2.1
Vereinfache jeden Term.
Schritt 3.2.1.1
Wende die Produktregel auf an.
Schritt 3.2.1.2
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 3.2.1.3
Potenziere mit .
Schritt 3.2.1.4
Kürze den gemeinsamen Faktor von .
Schritt 3.2.1.4.1
Faktorisiere aus heraus.
Schritt 3.2.1.4.2
Faktorisiere aus heraus.
Schritt 3.2.1.4.3
Kürze den gemeinsamen Faktor.
Schritt 3.2.1.4.4
Forme den Ausdruck um.
Schritt 3.2.1.5
Kombiniere und .
Schritt 3.2.1.6
Kombiniere und .
Schritt 3.2.1.7
Ziehe das Minuszeichen vor den Bruch.
Schritt 3.2.2
Ermittle den gemeinsamen Nenner.
Schritt 3.2.2.1
Mutltipliziere mit .
Schritt 3.2.2.2
Mutltipliziere mit .
Schritt 3.2.2.3
Schreibe als einen Bruch mit dem Nenner .
Schritt 3.2.2.4
Mutltipliziere mit .
Schritt 3.2.2.5
Mutltipliziere mit .
Schritt 3.2.2.6
Stelle die Faktoren von um.
Schritt 3.2.2.7
Mutltipliziere mit .
Schritt 3.2.3
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 3.2.4
Vereinfache jeden Term.
Schritt 3.2.4.1
Mutltipliziere mit .
Schritt 3.2.4.2
Mutltipliziere mit .
Schritt 3.2.5
Vereinfache durch Addieren und Subtrahieren.
Schritt 3.2.5.1
Subtrahiere von .
Schritt 3.2.5.2
Addiere und .
Schritt 3.2.6
Die endgültige Lösung ist .
Schritt 4
Die horizontale Tangentenlinie der Funktion ist .
Schritt 5