Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Bringe den Grenzwert in die trigonometrische Funktion, da der Sinus stetig ist.
Schritt 1.2
Zerlege den Grenzwert unter Anwendung der Summenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 1.3
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 1.4
Berechne den Grenzwert von , welcher konstant ist, wenn sich annähert.
Schritt 2
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 3
Schritt 3.1
Vereinfache den Zähler.
Schritt 3.1.1
Vereinfache jeden Term.
Schritt 3.1.1.1
Mutltipliziere mit .
Schritt 3.1.1.2
Mutltipliziere mit .
Schritt 3.1.2
Subtrahiere von .
Schritt 3.1.3
Der genau Wert von ist .
Schritt 3.2
Vereinfache den Nenner.
Schritt 3.2.1
Schreibe als um.
Schritt 3.2.2
Da beide Terme perfekte Quadrate sind, faktorisiere durch Anwendung der dritten binomischen Formel, , mit und .
Schritt 3.3
Dividiere durch .