Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Zerlege den Grenzwert unter Anwendung der Summenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 1.2
Bringe den Grenzwert in die trigonometrische Funktion, da der Kosinus stetig ist.
Schritt 1.3
Berechne den Grenzwert von , welcher konstant ist, wenn sich annähert.
Schritt 2
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 3
Schritt 3.1
Multiply the numerator and denominator of the fraction by .
Schritt 3.1.1
Mutltipliziere mit .
Schritt 3.1.2
Kombinieren.
Schritt 3.2
Wende das Distributivgesetz an.
Schritt 3.3
Vereinfache durch Kürzen.
Schritt 3.3.1
Kürze den gemeinsamen Faktor von .
Schritt 3.3.1.1
Bringe das führende Minuszeichen in in den Zähler.
Schritt 3.3.1.2
Faktorisiere aus heraus.
Schritt 3.3.1.3
Kürze den gemeinsamen Faktor.
Schritt 3.3.1.4
Forme den Ausdruck um.
Schritt 3.3.2
Mutltipliziere mit .
Schritt 3.3.3
Kürze den gemeinsamen Faktor von .
Schritt 3.3.3.1
Bringe das führende Minuszeichen in in den Zähler.
Schritt 3.3.3.2
Faktorisiere aus heraus.
Schritt 3.3.3.3
Kürze den gemeinsamen Faktor.
Schritt 3.3.3.4
Forme den Ausdruck um.
Schritt 3.3.4
Mutltipliziere mit .
Schritt 3.4
Vereinfache den Zähler.
Schritt 3.4.1
Der genau Wert von ist .
Schritt 3.4.2
Kürze den gemeinsamen Faktor von .
Schritt 3.4.2.1
Faktorisiere aus heraus.
Schritt 3.4.2.2
Kürze den gemeinsamen Faktor.
Schritt 3.4.2.3
Forme den Ausdruck um.
Schritt 3.4.3
Subtrahiere von .
Schritt 3.5
Faktorisiere aus heraus.
Schritt 3.5.1
Faktorisiere aus heraus.
Schritt 3.5.2
Faktorisiere aus heraus.
Schritt 3.5.3
Faktorisiere aus heraus.
Schritt 3.6
Kürze den gemeinsamen Teiler von und .
Schritt 3.6.1
Faktorisiere aus heraus.
Schritt 3.6.2
Kürze die gemeinsamen Faktoren.
Schritt 3.6.2.1
Kürze den gemeinsamen Faktor.
Schritt 3.6.2.2
Forme den Ausdruck um.
Schritt 3.7
Dividiere durch .