Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 2
Schritt 2.1
Berechne den Grenzwert des Zählers und den Grenzwert des Nenners.
Schritt 2.1.1
Bilde den Grenzwert für den Zähler und den Grenzwert für den Nenner.
Schritt 2.1.2
Berechne den Grenzwert des Zählers.
Schritt 2.1.2.1
Berechne den Grenzwert.
Schritt 2.1.2.1.1
Ziehe den Exponenten von aus dem Grenzwert durch Anwendung der Potenzregel für Grenzwerte.
Schritt 2.1.2.1.2
Bringe den Grenzwert in die trigonometrische Funktion, da der Sinus stetig ist.
Schritt 2.1.2.2
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 2.1.2.3
Vereinfache die Lösung.
Schritt 2.1.2.3.1
Wende den Referenzwinkel an, indem du den Winkel mit den entsprechenden trigonometrischen Werten im ersten Quadranten findest.
Schritt 2.1.2.3.2
Der genau Wert von ist .
Schritt 2.1.2.3.3
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 2.1.3
Berechne den Grenzwert des Nenners.
Schritt 2.1.3.1
Berechne den Grenzwert.
Schritt 2.1.3.1.1
Zerlege den Grenzwert unter Anwendung der Summenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 2.1.3.1.2
Berechne den Grenzwert von , welcher konstant ist, wenn sich annähert.
Schritt 2.1.3.1.3
Bringe den Grenzwert in die trigonometrische Funktion, da der Kosinus stetig ist.
Schritt 2.1.3.2
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 2.1.3.3
Vereinfache die Lösung.
Schritt 2.1.3.3.1
Vereinfache jeden Term.
Schritt 2.1.3.3.1.1
Wende den Referenzwinkel an, indem du den Winkel mit den entsprechenden trigonometrischen Werten im ersten Quadranten findest. Kehre das Vorzeichen des Ausdrucks um, da der Kosinus im zweiten Quadranten negativ ist.
Schritt 2.1.3.3.1.2
Der genau Wert von ist .
Schritt 2.1.3.3.1.3
Mutltipliziere mit .
Schritt 2.1.3.3.2
Subtrahiere von .
Schritt 2.1.3.3.3
Der Ausdruck enthält eine Division durch . Der Ausdruck ist nicht definiert.
Undefiniert
Schritt 2.1.3.4
Der Ausdruck enthält eine Division durch . Der Ausdruck ist nicht definiert.
Undefiniert
Schritt 2.1.4
Der Ausdruck enthält eine Division durch . Der Ausdruck ist nicht definiert.
Undefiniert
Schritt 2.2
Da unbestimmt ist, wende die Regel von L'Hospital an. Die Regel von L'Hospital besagt, dass der Grenzwert eines Quotienten von Funktionen gleich dem Grenzwert des Quotienten ihrer Ableitungen ist.
Schritt 2.3
Bestimme die Ableitung des Zählers und des Nenners.
Schritt 2.3.1
Differenziere den Zähler und Nenner.
Schritt 2.3.2
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 2.3.2.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 2.3.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.3.2.3
Ersetze alle durch .
Schritt 2.3.3
Die Ableitung von nach ist .
Schritt 2.3.4
Vereinfache.
Schritt 2.3.4.1
Stelle die Faktoren von um.
Schritt 2.3.4.2
Stelle und um.
Schritt 2.3.4.3
Stelle und um.
Schritt 2.3.4.4
Wende die Doppelwinkelfunktion für den Sinus an.
Schritt 2.3.5
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.3.6
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 2.3.7
Die Ableitung von nach ist .
Schritt 2.3.8
Subtrahiere von .
Schritt 3
Schritt 3.1
Berechne den Grenzwert des Zählers und den Grenzwert des Nenners.
Schritt 3.1.1
Bilde den Grenzwert für den Zähler und den Grenzwert für den Nenner.
Schritt 3.1.2
Berechne den Grenzwert des Zählers.
Schritt 3.1.2.1
Berechne den Grenzwert.
Schritt 3.1.2.1.1
Bringe den Grenzwert in die trigonometrische Funktion, da der Sinus stetig ist.
Schritt 3.1.2.1.2
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 3.1.2.2
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 3.1.2.3
Vereinfache die Lösung.
Schritt 3.1.2.3.1
Subtrahiere ganze Umdrehungen von , bis der Winkel größer oder gleich und kleiner als ist.
Schritt 3.1.2.3.2
Der genau Wert von ist .
Schritt 3.1.3
Berechne den Grenzwert des Nenners.
Schritt 3.1.3.1
Berechne den Grenzwert.
Schritt 3.1.3.1.1
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 3.1.3.1.2
Bringe den Grenzwert in die trigonometrische Funktion, da der Sinus stetig ist.
Schritt 3.1.3.2
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 3.1.3.3
Vereinfache die Lösung.
Schritt 3.1.3.3.1
Wende den Referenzwinkel an, indem du den Winkel mit den entsprechenden trigonometrischen Werten im ersten Quadranten findest.
Schritt 3.1.3.3.2
Der genau Wert von ist .
Schritt 3.1.3.3.3
Mutltipliziere mit .
Schritt 3.1.3.3.4
Der Ausdruck enthält eine Division durch . Der Ausdruck ist nicht definiert.
Undefiniert
Schritt 3.1.3.4
Der Ausdruck enthält eine Division durch . Der Ausdruck ist nicht definiert.
Undefiniert
Schritt 3.1.4
Der Ausdruck enthält eine Division durch . Der Ausdruck ist nicht definiert.
Undefiniert
Schritt 3.2
Da unbestimmt ist, wende die Regel von L'Hospital an. Die Regel von L'Hospital besagt, dass der Grenzwert eines Quotienten von Funktionen gleich dem Grenzwert des Quotienten ihrer Ableitungen ist.
Schritt 3.3
Bestimme die Ableitung des Zählers und des Nenners.
Schritt 3.3.1
Differenziere den Zähler und Nenner.
Schritt 3.3.2
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 3.3.2.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 3.3.2.2
Die Ableitung von nach ist .
Schritt 3.3.2.3
Ersetze alle durch .
Schritt 3.3.3
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.3.4
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.3.5
Mutltipliziere mit .
Schritt 3.3.6
Bringe auf die linke Seite von .
Schritt 3.3.7
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.3.8
Die Ableitung von nach ist .
Schritt 4
Schritt 4.1
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 4.2
Zerlege den Grenzwert unter Anwendung der Quotientenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 4.3
Bringe den Grenzwert in die trigonometrische Funktion, da der Kosinus stetig ist.
Schritt 4.4
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 4.5
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 4.6
Bringe den Grenzwert in die trigonometrische Funktion, da der Kosinus stetig ist.
Schritt 5
Schritt 5.1
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 5.2
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 6
Schritt 6.1
Mutltipliziere mit .
Schritt 6.2
Vereinfache den Zähler.
Schritt 6.2.1
Subtrahiere ganze Umdrehungen von , bis der Winkel größer oder gleich und kleiner als ist.
Schritt 6.2.2
Der genau Wert von ist .
Schritt 6.3
Vereinfache den Nenner.
Schritt 6.3.1
Wende den Referenzwinkel an, indem du den Winkel mit den entsprechenden trigonometrischen Werten im ersten Quadranten findest. Kehre das Vorzeichen des Ausdrucks um, da der Kosinus im zweiten Quadranten negativ ist.
Schritt 6.3.2
Der genau Wert von ist .
Schritt 6.3.3
Mutltipliziere mit .
Schritt 6.4
Mutltipliziere mit .
Schritt 6.5
Kürze den gemeinsamen Faktor von .
Schritt 6.5.1
Kürze den gemeinsamen Faktor.
Schritt 6.5.2
Forme den Ausdruck um.
Schritt 6.6
Mutltipliziere mit .