Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Zerlege den Grenzwert unter Anwendung der Quotientenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 2
Zerlege den Grenzwert unter Anwendung der Summenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 3
Berechne den Grenzwert von , welcher konstant ist, wenn sich annähert.
Schritt 4
Bringe den Grenzwert in die trigonometrische Funktion, da der Sinus stetig ist.
Schritt 5
Zerlege den Grenzwert unter Anwendung der Summenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 6
Berechne den Grenzwert von , welcher konstant ist, wenn sich annähert.
Schritt 7
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 8
Bringe den Grenzwert in die trigonometrische Funktion, da der Kosinus stetig ist.
Schritt 9
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 10
Schritt 10.1
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 10.2
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 11
Schritt 11.1
Vereinfache den Zähler.
Schritt 11.1.1
Wende den Referenzwinkel an, indem du den Winkel mit den entsprechenden trigonometrischen Werten im ersten Quadranten findest.
Schritt 11.1.2
Der genau Wert von ist .
Schritt 11.1.3
Mutltipliziere mit .
Schritt 11.1.4
Addiere und .
Schritt 11.2
Vereinfache den Nenner.
Schritt 11.2.1
Subtrahiere ganze Umdrehungen von , bis der Winkel größer oder gleich und kleiner als ist.
Schritt 11.2.2
Der genau Wert von ist .
Schritt 11.2.3
Mutltipliziere mit .
Schritt 11.2.4
Addiere und .
Schritt 12
Das Ergebnis kann in mehreren Formen wiedergegeben werden.
Exakte Form:
Dezimalform: