Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Die Summe einer endlichen geometrischen Reihe kann mit der Formel gefunden werden, wobei der erste Term und das Verhältnis zwischen den aufeinanderfolgenden Termen ist.
Schritt 2
Schritt 2.1
Setze und in die Formel für ein.
Schritt 2.2
Vereinfache.
Schritt 2.2.1
Multipliziere den Zähler mit dem Kehrwert des Nenners.
Schritt 2.2.2
Kombinieren.
Schritt 2.2.3
Kürze den gemeinsamen Teiler von und .
Schritt 2.2.3.1
Faktorisiere aus heraus.
Schritt 2.2.3.2
Kürze die gemeinsamen Faktoren.
Schritt 2.2.3.2.1
Faktorisiere aus heraus.
Schritt 2.2.3.2.2
Kürze den gemeinsamen Faktor.
Schritt 2.2.3.2.3
Forme den Ausdruck um.
Schritt 2.2.4
Kürze den gemeinsamen Faktor von .
Schritt 2.2.4.1
Kürze den gemeinsamen Faktor.
Schritt 2.2.4.2
Dividiere durch .
Schritt 3
Schritt 3.1
Setze für in ein.
Schritt 3.2
Berechne den Exponenten.
Schritt 4
Ersetze die Werte des Verhältnisses, des ersten Terms und die Anzahl der Terme in der Summenformel.
Schritt 5
Schritt 5.1
Vereinfache den Zähler.
Schritt 5.1.1
Potenziere mit .
Schritt 5.1.2
Mutltipliziere mit .
Schritt 5.1.3
Subtrahiere von .
Schritt 5.2
Vereinfache den Nenner.
Schritt 5.2.1
Mutltipliziere mit .
Schritt 5.2.2
Subtrahiere von .
Schritt 5.3
Kürze den gemeinsamen Faktor von .
Schritt 5.3.1
Faktorisiere aus heraus.
Schritt 5.3.2
Faktorisiere aus heraus.
Schritt 5.3.3
Kürze den gemeinsamen Faktor.
Schritt 5.3.4
Forme den Ausdruck um.
Schritt 5.4
Mutltipliziere mit .
Schritt 5.5
Mutltipliziere mit .
Schritt 5.6
Mutltipliziere mit .
Schritt 5.7
Dividieren zweier negativer Zahlen ergibt eine positive Zahl.
Schritt 6
Das Ergebnis kann in mehreren Formen wiedergegeben werden.
Exakte Form:
Dezimalform:
Darstellung als gemischte Zahl: