Analysis Beispiele

Berechne unter Anwendung der Regel von de l’Hospital Grenzwert von ((2x-3)/(2x+5))^(2x+1), wenn x gegen 8 geht
Schritt 1
Wende die Logarithmengesetze an, um den Grenzwert zu vereinfachen.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Schreibe als um.
Schritt 1.2
Zerlege durch Herausziehen von aus dem Logarithmus.
Schritt 2
Berechne den Grenzwert.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Bringe den Grenzwert in den Exponenten.
Schritt 2.2
Zerlege den Grenzwert unter Anwendung der Produktregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 2.3
Zerlege den Grenzwert unter Anwendung der Summenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 2.4
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 2.5
Berechne den Grenzwert von , welcher konstant ist, wenn sich annähert.
Schritt 2.6
Bringe den Grenzwert in den Logarithmus.
Schritt 2.7
Zerlege den Grenzwert unter Anwendung der Quotientenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 2.8
Zerlege den Grenzwert unter Anwendung der Summenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 2.9
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 2.10
Berechne den Grenzwert von , welcher konstant ist, wenn sich annähert.
Schritt 2.11
Zerlege den Grenzwert unter Anwendung der Summenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 2.12
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 2.13
Berechne den Grenzwert von , welcher konstant ist, wenn sich annähert.
Schritt 3
Berechne die Grenzwerte durch Einsetzen von für alle .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 3.2
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 3.3
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 4
Vereinfache die Lösung.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Mutltipliziere mit .
Schritt 4.2
Addiere und .
Schritt 4.3
Vereinfache , indem du in den Logarithmus ziehst.
Schritt 4.4
Exponentialfunktion und Logarithmusfunktion sind zueinander inverse Funktionen.
Schritt 4.5
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.5.1
Mutltipliziere mit .
Schritt 4.5.2
Mutltipliziere mit .
Schritt 4.5.3
Subtrahiere von .
Schritt 4.6
Vereinfache den Nenner.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.6.1
Mutltipliziere mit .
Schritt 4.6.2
Addiere und .
Schritt 4.7
Wende die Produktregel auf an.
Schritt 4.8
Potenziere mit .
Schritt 4.9
Potenziere mit .
Schritt 4.10
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.10.1
Faktorisiere aus heraus.
Schritt 4.10.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.10.2.1
Faktorisiere aus heraus.
Schritt 4.10.2.2
Kürze den gemeinsamen Faktor.
Schritt 4.10.2.3
Forme den Ausdruck um.