Analysis Beispiele

Berechne das Integral Integral über ( Quadratwurzel von 5x)/5+5/( Quadratwurzel von 5x) nach x
Schritt 1
Zerlege das einzelne Integral in mehrere Integrale.
Schritt 2
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 3
Sei . Dann ist , folglich . Forme um unter Verwendung von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Es sei . Ermittle .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.1
Differenziere .
Schritt 3.1.2
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.1.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.1.4
Mutltipliziere mit .
Schritt 3.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 4
Kombiniere und .
Schritt 5
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 6
Vereinfache den Ausdruck.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1.1
Mutltipliziere mit .
Schritt 6.1.2
Mutltipliziere mit .
Schritt 6.2
Benutze , um als neu zu schreiben.
Schritt 7
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 8
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 9
Sei . Dann ist , folglich . Forme um unter Verwendung von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 9.1
Es sei . Ermittle .
Tippen, um mehr Schritte zu sehen ...
Schritt 9.1.1
Differenziere .
Schritt 9.1.2
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 9.1.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 9.1.4
Mutltipliziere mit .
Schritt 9.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 10
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 10.1
Mutltipliziere mit .
Schritt 10.2
Bringe auf die linke Seite von .
Schritt 11
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 12
Vereinfache den Ausdruck.
Tippen, um mehr Schritte zu sehen ...
Schritt 12.1
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 12.1.1
Kombiniere und .
Schritt 12.1.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 12.1.2.1
Kürze den gemeinsamen Faktor.
Schritt 12.1.2.2
Forme den Ausdruck um.
Schritt 12.1.3
Mutltipliziere mit .
Schritt 12.2
Wende die grundlegenden Potenzregeln an.
Tippen, um mehr Schritte zu sehen ...
Schritt 12.2.1
Benutze , um als neu zu schreiben.
Schritt 12.2.2
Bringe aus dem Nenner durch Potenzieren mit .
Schritt 12.2.3
Multipliziere die Exponenten in .
Tippen, um mehr Schritte zu sehen ...
Schritt 12.2.3.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 12.2.3.2
Kombiniere und .
Schritt 12.2.3.3
Ziehe das Minuszeichen vor den Bruch.
Schritt 13
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 14
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 14.1
Vereinfache.
Schritt 14.2
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 14.2.1
Mutltipliziere mit .
Schritt 14.2.2
Mutltipliziere mit .
Schritt 15
Setze für jede eingesetzte Integrationsvariable neu ein.
Tippen, um mehr Schritte zu sehen ...
Schritt 15.1
Ersetze alle durch .
Schritt 15.2
Ersetze alle durch .