Analysis Beispiele

Berechne das Integral Integral über (1-cos(x/2))sin(x/2) nach x
Schritt 1
Sei . Dann ist , folglich . Forme um unter Verwendung von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Es sei . Ermittle .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1
Differenziere .
Schritt 1.1.2
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.1.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.4
Mutltipliziere mit .
Schritt 1.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 2
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Multipliziere mit dem Kehrwert des Bruchs, um durch zu dividieren.
Schritt 2.2
Mutltipliziere mit .
Schritt 2.3
Bringe auf die linke Seite von .
Schritt 3
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 4
Sei . Dann ist , folglich . Forme um unter Verwendung von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Es sei . Ermittle .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.1
Differenziere .
Schritt 4.1.2
Die Ableitung von nach ist .
Schritt 4.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 5
Zerlege das einzelne Integral in mehrere Integrale.
Schritt 6
Wende die Konstantenregel an.
Schritt 7
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 8
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.1
Kombiniere und .
Schritt 8.2
Vereinfache.
Schritt 9
Setze für jede eingesetzte Integrationsvariable neu ein.
Tippen, um mehr Schritte zu sehen ...
Schritt 9.1
Ersetze alle durch .
Schritt 9.2
Ersetze alle durch .
Schritt 10
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 10.1
Kombiniere und .
Schritt 10.2
Wende das Distributivgesetz an.
Schritt 10.3
Mutltipliziere mit .
Schritt 10.4
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 10.4.1
Kürze den gemeinsamen Faktor.
Schritt 10.4.2
Forme den Ausdruck um.
Schritt 11
Stelle die Terme um.