Analysis Beispiele

Berechne das Integral Integral über 2e^(2y)-2e^(-2y) nach y
Schritt 1
Zerlege das einzelne Integral in mehrere Integrale.
Schritt 2
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 3
Sei . Dann ist , folglich . Forme um unter Verwendung von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Es sei . Ermittle .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.1
Differenziere .
Schritt 3.1.2
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.1.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.1.4
Mutltipliziere mit .
Schritt 3.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 4
Kombiniere und .
Schritt 5
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 6
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Kombiniere und .
Schritt 6.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.1
Kürze den gemeinsamen Faktor.
Schritt 6.2.2
Forme den Ausdruck um.
Schritt 6.3
Mutltipliziere mit .
Schritt 7
Das Integral von nach ist .
Schritt 8
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 9
Sei . Dann ist , folglich . Forme um unter Verwendung von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 9.1
Es sei . Ermittle .
Tippen, um mehr Schritte zu sehen ...
Schritt 9.1.1
Differenziere .
Schritt 9.1.2
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 9.1.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 9.1.4
Mutltipliziere mit .
Schritt 9.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 10
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 10.1
Ziehe das Minuszeichen vor den Bruch.
Schritt 10.2
Kombiniere und .
Schritt 11
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 12
Mutltipliziere mit .
Schritt 13
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 14
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 14.1
Kombiniere und .
Schritt 14.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 14.2.1
Kürze den gemeinsamen Faktor.
Schritt 14.2.2
Forme den Ausdruck um.
Schritt 14.3
Mutltipliziere mit .
Schritt 15
Das Integral von nach ist .
Schritt 16
Vereinfache.
Schritt 17
Setze für jede eingesetzte Integrationsvariable neu ein.
Tippen, um mehr Schritte zu sehen ...
Schritt 17.1
Ersetze alle durch .
Schritt 17.2
Ersetze alle durch .